The Antarctic bottom water (AABW) is a type of water mass in the Southern Ocean surrounding Antarctica with temperatures ranging from −0.8 to 2 °C (35 °F) and absolute salinities from 34.6 to 35.0 g/kg. As the densest water mass of the oceans, AABW is found to occupy the depth range below 4000 m of all ocean basins that have a connection to the Southern Ocean at that level.
The major significance of Antarctic bottom water is that it is the coldest bottom water, giving it a significant influence on large-scale movement in the world's oceans through thermohaline circulation.
Initially, AABW has a high oxygen content relative to the rest of the oceans' deep waters but this depletes over time. This early oxygen abundance comes from the precursor water mass of the AABW, which is cold, relatively salty and oxygen-rich dense shelf water (DSW) formed above Antarctica’s continental shelf by wintertime cooling and brine rejection. This water sinks at four distinct regions around the margins of the continent and forms the AABW; this process leads to ventilation of the deep ocean, or abyssal ventilation.
Antarctic bottom water is created in part due to the major overturning of ocean water.
Antarctic bottom water is formed in the Weddell and Ross Seas, off the Adélie Coast and by Cape Darnley from surface water cooling in polynyas and below the ice shelf. A unique feature of Antarctic bottom water is the cold surface wind blowing off the Antarctic continent. The surface wind creates the polynyas which opens up the water surface to more wind. This Antarctic wind is stronger during the winter months and thus the Antarctic bottom water formation is more pronounced during the Antarctic winter season. Surface water is enriched in salt from sea ice formation. Due to its increased density, it flows down the Antarctic continental margin and continues north along the bottom. It is the densest water in the free ocean, and underlies other bottom and intermediate waters throughout most of the southern hemisphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
The Southern Ocean, also known as the Antarctic Ocean, comprises the southernmost waters of the world ocean, generally taken to be south of 60° S latitude and encircling Antarctica. With a size of , it is regarded as the second-smallest of the five principal oceanic divisions: smaller than the Pacific, Atlantic, and Indian oceans but larger than the Arctic Ocean. Since the 1980s, the Southern Ocean has been subject to rapid climate change, which has led to changes in the marine ecosystem.
Antarctica (ænˈtɑːrktᵻkə) is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean (also known as the Antarctic Ocean), it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of . Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of . Antarctica is, on average, the coldest, driest, and windiest of the continents, and it has the highest average elevation.
Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water).
Carbon monoxide (CO) is a naturally occurring atmospheric trace gas, a regulated pollutant, and one of the main components determining the oxidative capacity of the atmosphere. Evaluating climate–chemistry models under different conditions than today and c ...
The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the ...
COPERNICUS GESELLSCHAFT MBH2023
, ,
Stable water isotopes (SWIs) contain valuable information on the past climate and phase changes in the hydrologic cycle. Recently, vapour measurements in the polar regions have provided new insights into the effects of snow-related and atmospheric processe ...