Concept

Spar (aeronautics)

In a fixed-wing aircraft, the spar is often the main structural member of the wing, running spanwise at right angles (or thereabouts depending on wing sweep) to the fuselage. The spar carries flight loads and the weight of the wings while on the ground. Other structural and forming members such as ribs may be attached to the spar or spars, with stressed skin construction also sharing the loads where it is used. There may be more than one spar in a wing or none at all. Where a single spar carries most of the force, it is known as the main spar. Spars are also used in other aircraft aerofoil surfaces such as the tailplane and fin and serve a similar function, although the loads transmitted may be different from those of a wing spar. The wing spar provides the majority of the weight support and dynamic load integrity of cantilever monoplanes, often coupled with the strength of the wing 'D' box itself. Together, these two structural components collectively provide the wing rigidity needed to enable the aircraft to fly safely. Biplanes employing flying wires have much of the flight loads transmitted through the wires and interplane struts enabling smaller section and thus lighter spars to be used at the cost of increasing drag. Aircraft flight mechanics Some of the forces acting on a wing spar are: Upward bending loads resulting from the wing lift force that supports the fuselage in flight. These forces are often offset by carrying fuel in the wings or employing wing-tip-mounted fuel tanks; the Cessna 310 is an example of this design feature. Downward bending loads while stationary on the ground due to the weight of the structure, fuel carried in the wings, and wing-mounted engines if used. Drag loads dependent on airspeed and inertia. Rolling inertia loads. Chordwise twisting loads due to aerodynamic effects at high airspeeds often associated with washout, and the use of ailerons resulting in control reversal. Further twisting loads are induced by changes of thrust settings to underwing-mounted engines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.