Summary
In software engineering, a microservice architecture is a variant of the service-oriented architecture structural style. It is an architectural pattern that arranges an application as a collection of loosely coupled, fine-grained services, communicating through lightweight protocols. One of its goals is that teams can develop and deploy their services independently of others. This is achieved by the reduction of several dependencies in the code base, allowing developers to evolve their services with limited restrictions from users, and for additional complexity to be hidden from users. As a consequence, organizations are able to develop software with fast growth and size, as well as use off-the-shelf services more easily. Communication requirements are reduced. These benefits come at a cost to maintaining the decoupling. Interfaces need to be designed carefully and treated as a public API. One technique that is used is having multiple interfaces on the same service, or multiple versions of the same service, so as to not disrupt existing users of the code. There is no single definition for microservices. A consensus view has evolved over time in the industry. Some of the defining characteristics that are frequently cited include: Services in a microservice architecture are often processes that communicate over a network to fulfill a goal using technology-agnostic protocols such as HTTP. Services are organized around business capabilities. Services can be implemented using different programming languages, databases, hardware and software environments, depending on what fits best. Services are small in size, messaging-enabled, bounded by contexts, autonomously developed, independently deployable, decentralized and built and released with automated processes. A microservice is not a layer within a monolithic application (for example, the web controller or the backend-for-frontend). Rather, it is a self-contained piece of business functionality with clear interfaces, and may, through its own internal components, implement a layered architecture.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.