Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The efficient utilization of resources in accelerated materials science necessitates flexible, reconfigurable software-defined research workflows. We demonstrate a brokering approach to modular and asynchronous research orchestration to integrate multiple laboratories in a cooperative multitenancy platform across disciplines and modalities. To the best of our knowledge, this constitutes the first internationally distributed materials acceleration platform (MAP) linked via a passive brokering server, which is demonstrated through a battery electrolyte workflow capable of determining density, viscosity, ionic conductivity, heat capacity, diffusion coefficients, transference numbers, and radial distribution functions that ran in five countries over the course of 2 weeks. We discuss the lessons learned from multitenancy and fault tolerance and chart a way to a universal battery MAP with fully ontology-linked schemas and cost-aware orchestration.
Berend Smit, Susana Garcia Lopez, Elias Moubarak, Balázs Álmos Novotny, Seyedmohamad Moosavi, Daniele Ongari, Mehrdad Asgari, Andres Adolfo Ortega Guerrero, Özge Kadioglu
Nicola Marzari, Lorenzo Monacelli