In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set. Virtually all programming languages today are Turing-complete. A related concept is that of Turing equivalence - two computers P and Q are called equivalent if P can simulate Q and Q can simulate P. The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a Turing machine, it is Turing equivalent to a Turing machine. A universal Turing machine can be used to simulate any Turing machine and by extension the computational aspects of any possible real-world computer. To show that something is Turing-complete, it is enough to show that it can be used to simulate some Turing-complete system. No physical system can have infinite memory, but if the limitation of finite memory is ignored, most programming languages are otherwise Turing-complete. In colloquial usage, the terms "Turing-complete" and "Turing-equivalent" are used to mean that any real-world general-purpose computer or computer language can approximately simulate the computational aspects of any other real-world general-purpose computer or computer language. In real life, this leads to the practical concepts of computing virtualization and emulation. Real computers constructed so far can be functionally analyzed like a single-tape Turing machine (the "tape" corresponding to their memory); thus the associated mathematics can apply by abstracting their operation far enough.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
MATH-642: Artificial Life
We will give an overview of the field of Artificial Life (Alife). We study questions such as emergence of complexity, self-reproduction, evolution, both through concrete models and through mathematica
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
CS-251: Theory of computation
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
Show more
Related lectures (34)
Regulator Polynomial RST: Classic Servo Systems
Explores classic regulator systems, polynomial degrees of freedom, servo model modifications, and system adjustment through simplification and zero invoicing.
State-Space Representation: Structure Theorem
Covers the structure theorem for state-space representations and companion forms.
Homotopy theory of chain complexes
Explores the homotopy theory of chain complexes, focusing on retractions and model category structures.
Show more
Related publications (45)

A Toolbox for Barriers on Interactive Oracle Proofs

Alessandro Chiesa

Interactive oracle proofs (IOPs) are a proof system model that combines features of interactive proofs (IPs) and probabilistically checkable proofs (PCPs). IOPs have prominent applications in complexity theory and cryptography, most notably to constructing ...
SPRINGER INTERNATIONAL PUBLISHING AG2022

Un centre d'art contemporain à la Chaux-de-fond

Le centre d’art contemporain de La Chaux-de-Fonds a pour objectif d’activer ponctuellement le quartier situé dans la partie sud du chemin de fer et de compléter l’offre artistique qui parsème la ville. Cette cité industrielle au dessein patrimonial est per ...
2021

What graph neural networks cannot learn: depth vs width

Andreas Loukas

This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attribut ...
2020
Show more
Related concepts (47)
Halting problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine.
Computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
Turing machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.