In physical cosmology, the electroweak epoch was the period in the evolution of the early universe when the temperature of the universe had fallen enough that the strong force separated from the electroweak interaction, but was high enough for electromagnetism and the weak interaction to remain merged into a single electroweak interaction above the critical temperature for electroweak symmetry breaking (159.5±1.5 GeV in the Standard Model of particle physics). Some cosmologists place the electroweak epoch at the start of the inflationary epoch, approximately 10−36 seconds after the Big Bang. Space is subjected to inflation, expanding by a factor of the order of 1026 over a time of the order of 10−33 to 10−32 seconds. The universe is supercooled from about 1027 down to 1022 kelvin. Some theorists suggest that this inflation is permanent, and may have created a universe that includes our parent universe or multiverse. The current concept of the universe has passed debate of the current academic community; however, there remains a conjecture, approximately 10−33 seconds, after the Big Bang. Others place it at approximately 10−32 seconds after the Big Bang when the potential energy of the inflaton field that had driven the inflation of the universe during the inflationary epoch was released, filling the universe with a dense, hot quark–gluon plasma. Particle interactions in this phase were energetic enough to create large numbers of exotic particles, including W and Z bosons and Higgs bosons. As the universe expanded and cooled, interactions became less energetic and when the universe was about 10−12 seconds old, W and Z bosons ceased to be created at observable rates. The remaining W and Z bosons decayed quickly, and the weak interaction became a short-range force in the following quark epoch. The electroweak epoch ended with an electroweak phase transition, the nature of which is unknown. If first order, this could source a gravitational wave background.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (13)
Thermal history of the Universe
Explores the evolution of the Universe, from its early stages to the present, covering topics such as astroparticle physics and the thermal history.
Numerical analysis
Covers advanced numerical analysis topics including deep neural networks and optimization methods.
Relativity and Cosmology: Introduction
Introduces the concepts of relativity and cosmology, covering the Big Bang Theory, general relativity, and statistical physics.
Show more
Related publications (50)

LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx ("SN Zwicky")

Frédéric Courbin, Adriano Agnello

Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of ...
IOP Publishing Ltd2023

Effective Field Theories for New and Old Physics

Alfredo Glioti

Effective Field Theories have changed our understanding of Quantum Field Theories. This thesis shows several applications of this powerful tool in the context of the Standard Model and for searches of New Physics.The thesis starts with a review of the Stan ...
EPFL2022
Show more
Related concepts (5)
Chronology of the universe
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level. For the purposes of this summary, it is convenient to divide the chronology of the universe since it originated, into five parts.
Quark epoch
In physical cosmology, the quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but the temperature of the universe was still too high to allow quarks to bind together to form hadrons. The quark epoch began approximately 10−12 seconds after the Big Bang, when the preceding electroweak epoch ended as the electroweak interaction separated into the weak interaction and electromagnetism.
Quark–gluon plasma
Quark–gluon plasma (or QGP and quark soup) is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.