Radiation pressure (also known as light pressure) is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is absorbed, reflected, or otherwise emitted (e.g. black-body radiation) by matter on any scale (from macroscopic objects to dust particles to gas molecules). The associated force is called the radiation pressure force, or sometimes just the force of light. The forces generated by radiation pressure are generally too small to be noticed under everyday circumstances; however, they are important in some physical processes and technologies. This particularly includes objects in outer space, where it is usually the main force acting on objects besides gravity, and where the net effect of a tiny force may have a large cumulative effect over long periods of time. For example, had the effects of the Sun's radiation pressure on the spacecraft of the Viking program been ignored, the spacecraft would have missed Mars' orbit by about . Radiation pressure from starlight is crucial in a number of astrophysical processes as well. The significance of radiation pressure increases rapidly at extremely high temperatures and can sometimes dwarf the usual gas pressure, for instance, in stellar interiors and thermonuclear weapons. Furthermore, large lasers operating in space have been suggested as a means of propelling sail craft in beam-powered propulsion. Radiation pressure forces are the bedrock of laser technology and the branches of science that rely heavily on lasers and other optical technologies. That includes, but is not limited to, biomicroscopy (where light is used to irradiate and observe microbes, cells, and molecules), quantum optics, and optomechanics (where light is used to probe and control objects like atoms, qubits and macroscopic quantum objects).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-323: Astrophysics II
Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Show more
Related lectures (38)
Inequality of Seasons: Earth's Orbit Representation
Explores the inequality of seasons by examining the Earth's orbit and the causes of the seasons in architecture and gnomonics.
Wave Optics Fundamentals
Delves into the basics of wave optics, covering interference, interferometers, ultrafast spectroscopy, and optical beating.
View Factors
Introduces view factors for analyzing radiation exchange between surfaces and emphasizes their importance in thermal radiation analysis.
Show more
Related publications (128)

The effect of plasma shaping on high density H-mode SOL profiles and fluctuations in TCV

Holger Reimerdes, Benoît Labit, Christian Gabriel Theiler, Umar Sheikh, Guang-Yu Sun, Sophie Danielle Angelica Gorno, Claudia Colandrea, Luke Simons, Nicola Vianello, Cedric Kar-Wai Tsui, Adriano Stagni, Yi Wang

The impact of plasma shaping on the properties of high density H-mode scrape-off layer (SOL) profiles and transport at the outer midplane has been investigated on Tokamaka configuration variable. The experimental dataset has been acquired by evolving the u ...
Bristol2024

Laser Doppler Vibrometer measurements of the 3D pressure field for the estimation of the radiation force produced by an acoustic standing-wave levitator

Amit Yedidia Dolev

Acoustic levitation devices use powerful ultrasonic standing waves to levitate objects in mid-air. We have created a system and method to measure the full harmonic content of the acoustic field accurately. Our study revealed that levitated particles alter ...
Elsevier Science Sa2024

Modeling reflection by structured building-integrated photovoltaics

Stephen William Wasilewski

Evaluating the reflection of solar radiation by Building Integrated Photovoltaics (BIPV) with structured front-glass is challenging for two reasons. First, the resulting irregular scattering of light cannot be accounted for by simple reflection models. Sec ...
2023
Show more
Related concepts (21)
Astronomy
Astronomy is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroid, asteroid, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere.
Outer space
Outer space, commonly referred to simply as space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty; it is a near-perfect vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature of outer space, as set by the background radiation from the Big Bang, is .
Interstellar medium
In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.
Show more
Related MOOCs (1)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.