Laboratory glassware refers to a variety of equipment used in scientific work, and traditionally made of glass. Glass can be blown, bent, cut, molded, and formed into many sizes and shapes, and is therefore common in chemistry, biology, and analytical laboratories. Many laboratories have training programs to demonstrate how glassware is used and to alert first–time users to the safety hazards involved with using glassware.
The history of glassware dates back to the Phoenicians who fused obsidian together in campfires making the first glassware. Glassware evolved as other ancient civilizations including the Syrians, Egyptians, and Romans refined the art of glassmaking. Mary the Jewess, an alchemist in Alexandria during the 1st century AD, is credited for the creation of some of the first glassware for chemical such as the kerotakis which was used for the collection of fumes from a heated material. Despite these creations, glassware for chemical uses was still limited during this time because of the low thermal stability necessary for experimentation and therefore was primarily made using copper or ceramic materials.
Glassware improved once again during the 14th-16th century, with the skill and knowledge of glass makers in Venice. During this time, the Venetians gathered knowledge about glassmaking from the East with information coming from Syria and the Byzantine Empire. Along with knowledge about glassmaking, glassmakers in Venice also received higher quality raw materials from the East such as imported plant ash which contained higher soda content compared to plant ash from other areas. This combination of better raw materials and information from the East led to the production of clearer and higher thermal and chemical durability leading towards the shift to the use of glassware in laboratories.
Many glasses that were produced in bulk in the 1830's would quickly become unclear and dirty because of the low quality glass being used.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative.
TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le c
Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion (≈3 × 10−6 K−1 at 20 °C), making them more resistant to thermal shock than any other common glass. Such glass is subjected to less thermal stress and can withstand temperature differentials without fracturing of about . It is commonly used for the construction of reagent bottles and flasks, as well as lighting, electronics, and cookware.
Laboratory flasks are vessels or containers that fall into the category of laboratory equipment known as glassware. In laboratory and other scientific settings, they are usually referred to simply as flasks. Flasks come in a number of shapes and a wide range of sizes, but a common distinguishing aspect in their shapes is a wider vessel "body" and one (or sometimes more) narrower tubular sections at the top called necks which have an opening at the top.
Round-bottom flasks (also called round-bottomed flasks or RB flasks) are types of flasks having spherical bottoms used as laboratory glassware, mostly for chemical or biochemical work. They are typically made of glass for chemical inertness; and in modern days, they are usually made of heat-resistant borosilicate glass. There is at least one tubular section known as the neck with an opening at the tip. Two- or three-necked flasks are common as well. Round bottom flasks come in many sizes, from 5 mL to 20 L, with the sizes usually inscribed on the glass.
, , , ,
The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be pr ...
Femtosecond laser exposure of fused silica in the nonablative regime can lead to various localized bulk modifications of the material structure. In this paper, we show that these laser-induced modifications can be used to tune silica thermal expansion prop ...
Print-light-synthesis is a new concept for the large-scale in situ fabrication of nanoparticles and structures on large substrates. Here, Pt nanoparticles are synthesized on indium tin oxide (ITO) coated glass slides by using combined inkjet printing and p ...