Twelvefold wayIn combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. The idea of the classification is credited to Gian-Carlo Rota, and the name was suggested by Joel Spencer. Let N and X be finite sets. Let and be the cardinality of the sets. Thus N is an n-set, and X is an x-set.
Rencontres numbersIn combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set { 1, ..., n } with specified numbers of fixed points: in other words, partial derangements. (Rencontre is French for encounter. By some accounts, the problem is named after a solitaire game.) For n ≥ 0 and 0 ≤ k ≤ n, the rencontres number Dn, k is the number of permutations of { 1, ..., n } that have exactly k fixed points.
Multinomial theoremIn mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials. For any positive integer m and any non-negative integer n, the multinomial formula describes how a sum with m terms expands when raised to an arbitrary power n: where is a multinomial coefficient. The sum is taken over all combinations of nonnegative integer indices k_1 through k_m such that the sum of all k_i is n.
Rubik's Cube groupThe Rubik's Cube group is a group that represents the structure of the Rubik's Cube mechanical puzzle. Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this representation, not only can any cube move be represented, but any position of the cube as well, by detailing the cube moves required to rotate the solved cube into that position. Indeed with the solved position as a starting point, there is a one-to-one correspondence between each of the legal positions of the Rubik's Cube and the elements of .
Permutation matrixIn mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another matrix, say A, results in permuting the rows (when pre-multiplying, to form PA) or columns (when post-multiplying, to form AP) of the matrix A.
Disjoint setsIn mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. This definition of disjoint sets can be extended to families of sets and to indexed families of sets.
Symmetric polynomialIn mathematics, a symmetric polynomial is a polynomial P(X1, X2, ..., Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial if for any permutation σ of the subscripts 1, 2, ..., n one has P(Xσ(1), Xσ(2), ..., Xσ(n)) = P(X1, X2, ..., Xn). Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting.
Symmetric inverse semigroupNOTOC In abstract algebra, the set of all partial bijections on a set X ( one-to-one partial transformations) forms an inverse semigroup, called the symmetric inverse semigroup (actually a monoid) on X. The conventional notation for the symmetric inverse semigroup on a set X is or . In general is not commutative. Details about the origin of the symmetric inverse semigroup are available in the discussion on the origins of the inverse semigroup. When X is a finite set {1, ...
Latin squareIn combinatorics and in experimental design, a Latin square is an n × n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares.
Inclusion–exclusion principleIn combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as where A and B are two finite sets and |S | indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice.