In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another matrix, say A, results in permuting the rows (when pre-multiplying, to form PA) or columns (when post-multiplying, to form AP) of the matrix A. Given a permutation pi of m elements, represented in two-line form by there are two natural ways to associate the permutation with a permutation matrix; namely, starting with the m × m identity matrix, Im, either permute the columns or permute the rows, according to pi. Both methods of defining permutation matrices appear in the literature and the properties expressed in one representation can be easily converted to the other representation. This article will primarily deal with just one of these representations and the other will only be mentioned when there is a difference to be aware of. The m × m permutation matrix Ppi = (pij) obtained by permuting the columns of the identity matrix Im, that is, for each i, pij = 1 if j = pi(i) and pij = 0 otherwise, will be referred to as the column representation in this article. Since the entries in row i are all 0 except that a 1 appears in column pi(i), we may write where , a standard basis vector, denotes a row vector of length m with 1 in the jth position and 0 in every other position. For example, the permutation matrix Ppi corresponding to the permutation is Observe that the jth column of the I5 identity matrix now appears as the pi(j)th column of Ppi. The other representation, obtained by permuting the rows of the identity matrix Im, that is, for each j, pij = 1 if i = pi(j) and pij = 0 otherwise, will be referred to as the row representation. The column representation of a permutation matrix is used throughout this section, except when otherwise indicated. Multiplying times a column vector g will permute the rows of the vector: Repeated use of this result shows that if M is an appropriately sized matrix, the product, is just a permutation of the rows of M.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
ME-427: Networked control systems
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Show more
Related publications (33)
Related concepts (16)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Permanent (mathematics)
In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. Both are special cases of a more general function of a matrix called the immanant. The permanent of an n×n matrix A = (ai,j) is defined as The sum here extends over all elements σ of the symmetric group Sn; i.e. over all permutations of the numbers 1, 2, ..., n.
Eigenvalues and eigenvectors
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.