**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Interquartile mean

Summary

The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores.
In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded.
assuming the values have been ordered.
The method is best explained with an example. Consider the following dataset:
5, 8, 4, 38, 8, 6, 9, 7, 7, 3, 1, 6
First sort the list from lowest-to-highest:
1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38
There are 12 observations (datapoints) in the dataset, thus we have 4 quartiles of 3 numbers. Discard the lowest and the highest 3 values:
1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38
We now have 6 of the 12 observations remaining; next, we calculate the arithmetic mean of these numbers:
xIQM = (5 + 6 + 6 + 7 + 7 + 8) / 6 = 6.5
This is the interquartile mean.
For comparison, the arithmetic mean of the original dataset is
(5 + 8 + 4 + 38 + 8 + 6 + 9 + 7 + 7 + 3 + 1 + 6) / 12 = 8.5
due to the strong influence of the outlier, 38.
The above example consisted of 12 observations in the dataset, which made the determination of the quartiles very easy. Of course, not all datasets have a number of observations that is divisible by 4. We can adjust the method of calculating the IQM to accommodate this. So ideally we want to have the IQM equal to the mean for symmetric distributions, e.g.:
1, 2, 3, 4, 5, 6
has a mean value xmean = 3, and since it is a symmetric distribution, xIQM = 3 would be desired.
We can solve this by using a weighted average of the quartiles and the interquartile dataset:
Consider the following dataset of 9 observations:
1, 3, 5, 7, 9, 11, 13, 15, 17
There are 9/4 = 2.25 observations in each quartile, and 4.5 observations in the interquartile range. Truncate the fractional quartile size, and remove this number from the 1st and 4th quartiles (2.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (16)

Related courses (2)

Related lectures (19)

Average

In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5. Depending on the context, an average might be another statistic such as the median, or mode. For example, the average personal income is often given as the median—the number below which are 50% of personal incomes and above which are 50% of personal incomes—because the mean would be higher by including personal incomes from a few billionaires.

Interquartile mean

The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. assuming the values have been ordered.

Truncated mean

A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points. For most statistical applications, 5 to 25 percent of the ends are discarded.

ENG-209: Data science for engineers with Python

Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro

ME-213: Programmation pour ingénieur

Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio

Measures of central tendencyMSE-213: Probability and statistics for materials science

Covers mean, median, mode, box plots, and histograms in datasets.

Quantiles, Sampling, Histogram DensityEE-209: Elements of statistics for data science

Explores quantiles, sampling, and histogram density for understanding distributions and constructing confidence intervals.

Matlab: 3D Surface PlottingME-213: Programmation pour ingénieur

Covers logical arrays, 3D surface plotting, parametric curves, interpolation, and fitting in Matlab.