Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Objectives Fluid and white matter suppression (FLAWS) is a recently proposed magnetic resonance sequence derived from magnetization-prepared 2 rapid acquisition gradient-echo providing 2 coregistered datasets with white matter- and cerebrospinal fluid-suppressed signal, enabling synthetic imaging with amplified contrast. Although these features are high potential for brain multiple sclerosis (MS) imaging, spinal cord has never been evaluated with this sequence to date. The objective of this work was therefore to assess diagnostic performance and self-confidence provided by compressed-sensing (CS) 3-dimensional (3D) FLAWS for cervical MS lesion detection on a head scan that includes the cervical cord without changing standard procedures. Materials and Methods Prospective 3 T scans (MS first diagnosis or follow-up) acquired between 2019 and 2020 were retrospectively analyzed. All patients underwent 3D CS-FLAWS (duration: 5 minutes 40 seconds), axial T-2 turbo spin echo covering cervical spine from cervicomedullary junction to the same inferior level as FLAWS, and sagittal cervical T-2/short tau inversion recovery imaging. Two readers performed a 2-stage double-blind reading, followed by consensus reading. Wilcoxon tests were used to compare the number of detected spinal cord lesions and the reader's diagnostic self-confidence when using FLAWS versus the reference 2D T-2-weighted imaging. Results Fifty-eight patients were included (mean age, 40 +/- 13 years, 46 women, 7 +/- 6 years mean disease duration). The CS-FLAWS detected significantly more lesions than the reference T-2-weighted imaging (197 vs 152 detected lesions, P < 0.001), with a sensitivity of 98% (T-2-weighted imaging sensitivity: 90%) after consensual reading. Considering the subgroup of patients who underwent sagittal T2 + short tau inversion recovery imaging (Magnetic Resonance Imaging for Multiple Sclerosis subgroup), +250% lesions were detected with FLAWS (63 vs 25 lesions detected, P < 0.001). Mean reading self-confidence was significantly better with CS-FLAWS (median, 5 [interquartile range, 1] [no doubt for diagnosis] vs 4 [interquartile range, 1] [high confidence]; P < 0.001). Conclusions Imaging with CS-FLAWS provides an improved cervical spinal cord exploration for MS with increased self-confidence compared with conventional T-2-weighted imaging, in a clinically acceptable time.
Erick Jorge Canales Rodriguez, Marco Pizzolato, Tim Bjørn Dyrby
Jacques Fellay, Christian Axel Wandall Thorball
Tobias Kober, Tom Hilbert, Gian Franco Piredda