**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Loss function

Summary

In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy.
In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this is

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (42)

Related units (21)

Related publications (100)

Related courses (87)

CS-233(a): Introduction to machine learning (BA3)

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

ME-454: Modelling and optimization of energy systems

The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, the solving methods for the simulation and the single and multi-objective optimisation problems.

EE-556: Mathematics of data: from theory to computation

This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees, describe scalable solution techniques and algorithms, and illustrate the trade-offs involved.

Loading

Loading

Loading

Related lectures (340)

Related concepts (53)

Estimator

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (th

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rul

Statistics

Statistics (from German: Statistik, "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and present

Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss function. To alleviate this issue, we propose a new method called large mask inpainting (LaMa). LaMa is based on i) a new inpainting network architecture that uses fast Fourier convolutions (FFCs), which have the imagewide receptive field; ii) a high receptive field perceptual loss; iii) large training masks, which unlocks the potential of the first two components. Our inpainting network improves the state-of-the-art across a range of datasets and achieves excellent performance even in challenging scenarios, e.g. completion of periodic structures. Our model generalizes surprisingly well to resolutions that are higher than those seen at train time, and achieves this at lower parameter&time costs than the competitive baselines. The code is available at https://github.com/saic-mdal/lama.

The gene family-free framework for comparative genomics aims at developing methods for gene order analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We present a model for constructing a median of three genomes in this family-free setting, based on maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity in the score of a gene adjacency. We show that the corresponding computational problem is MAX SNP-hard and we present a 0-1 linear program for its exact solution. The result of this program is a median genome with median genes associated to extant genes, in which median adjacencies are assumed to define positional orthologs. We demonstrate through simulations and comparison with the OMA orthology database that the herein presented method is able compute accurate medians and positional orthologs for genomes comparable in size of bacterial genomes.

Background: The gene family-free framework for comparative genomics aims at providing methods for gene order analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We study two problems related to the breakpoint median of three genomes, which asks for the construction of a fourth genome that minimizes the sum of breakpoint distances to the input genomes. Methods: We present a model for constructing a median of three genomes in this family-free setting, based on maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity in the score of a gene adjacency. We study its computational complexity and we describe an integer linear program (ILP) for its exact solution. We further discuss a related problem called family-free adjacencies for k genomes for the special case of k

2017