**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Bias of an estimator

Summary

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.
All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.
Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property.
Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see ); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below.
Suppose we have a statistical model, parameterized by a real number θ, giving rise to a probability distribution for observed data, , and a statistic which serves as an estimator of θ based on any observed data .

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications (31)

Related people (14)

Related units

Related concepts (74)

Related courses (61)

Related lectures (467)

Related MOOCs

No results

No results

Variance

In probability theory and statistics, variance is the squared deviation from the mean of a random variable. The variance is also often defined as the square of the standard deviation. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

Minimum-variance unbiased estimator

In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.

Loss function

In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.

MATH-413: Statistics for data science

Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops

MATH-342: Time series

A first course in statistical time series analysis and applications.

FIN-403: Econometrics

The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.

Monte Carlo: Markov Chains

Covers unsupervised learning, dimensionality reduction, SVD, low-rank estimation, PCA, and Monte Carlo Markov Chains.

Parameter Estimation & Fisher Information

Covers parameter estimation, Fisher information, unbiased estimator, and exponential distributions.

Density of States and Bayesian Inference in Computational Mathematics

Explores computing density of states and Bayesian inference using importance sampling, showcasing lower variance and parallelizability of the proposed method.

Loading

Loading

Loading

This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional

The problem of covariance estimation for replicated surface-valued processes is examined from the functional data analysis perspective. Considerations of statistical and computational efficiency often

,

We present a framework for performing regression when both covariate and response are probability distributions on a compact interval. Our regression model is based on the theory of optimal transporta