Smith setIn voting systems, the Smith set, named after John H. Smith, but also known as the top cycle, or as Generalized Top-Choice Assumption (GETCHA), is the smallest non-empty set of candidates in a particular election such that each member defeats every candidate outside the set in a pairwise election. The Smith set provides one standard of optimal choice for an election outcome. Voting systems that always elect a candidate from the Smith set pass the Smith criterion and are said to be 'Smith-efficient' or to satisfy the Smith criterion.
Strategic votingStrategic voting, also called tactical voting, sophisticated voting or insincere voting, occurs in voting systems when a voter votes for a candidate or party other than their sincere preference to prevent an undesirable outcome. For example, in a simple plurality election, a voter might gain a better outcome by voting for a less preferred but more generally popular candidate. Gibbard's theorem shows that all single-winner voting methods encourage strategic voting, unless there are only two options or dictatorial (i.
Smith criterionThe Smith criterion (sometimes generalized Condorcet criterion, but this can have other meanings) is a voting systems criterion defined such that it's satisfied when a voting system always elects a candidate that is in the Smith set, which is the smallest non-empty subset of the candidates such that every candidate in the subset is majority-preferred over every candidate not in the subset. (A candidate X is said to be majority-preferred over another candidate Y if, in a one-on-one competition between X & Y, the number of voters who prefer X over Y exceeds the number of voters who prefer Y over X.
Nanson's methodThe Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method (also called Total Vote Runoff or TVR). Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings. The Nanson method is based on the original work of the mathematician Edward J. Nanson in 1882.
Copeland's methodCopeland's method is a ranked voting method based on a scoring system of pairwise "wins", "losses", and "ties". The method has a long history: Ramon Llull described the system in 1299, so it is sometimes referred to as "Llull's method" The Marquis de Condorcet described a similar system in the 1780s, so the method could be referred to as "Condorcet's method", but instead other systems were subsequently devised that choose the Condorcet winner. Arthur Herbert Copeland described the system in the 1950s, so it has been frequently been called "Copeland's method".
Bucklin votingBucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system. Bucklin rules varied, but here is a typical example: Voters are allowed rank preference ballots (first, second, third, etc.
Independence of clones criterionIn voting systems theory, the independence of clones criterion measures an election method's robustness to strategic nomination. Nicolaus Tideman was the first to formulate this criterion, which states that the winner must not change due to the addition of a non-winning candidate who is similar to a candidate already present. To be more precise, a subset of the candidates, called a set of clones, exists if no voter ranks any candidate outside the set between (or equal to) any candidates that are in the set.
Participation criterionThe participation criterion is a voting system criterion. Voting systems that fail the participation criterion are said to exhibit the no show paradox and allow a particularly unusual strategy of tactical voting: abstaining from an election can help a voter's preferred choice win. The criterion has been defined as follows: In a deterministic framework, the participation criterion says that the addition of a ballot, where candidate A is strictly preferred to candidate B, to an existing tally of votes should not change the winner from candidate A to candidate B.
Monotonicity criterionThe monotonicity criterion is a voting system criterion used to evaluate both single and multiple winner ranked voting systems. A ranked voting system is monotonic if it is neither possible to prevent the election of a candidate by ranking them higher on some of the ballots, nor possible to elect an otherwise unelected candidate by ranking them lower on some of the ballots (while nothing else is altered on any ballot). That is to say, in single winner elections no winner is harmed by up-ranking and no loser is helped by down-ranking.
Majority loser criterionThe majority loser criterion is a criterion to evaluate single-winner voting systems. The criterion states that if a majority of voters prefers every other candidate over a given candidate, then that candidate must not win. Either of the Condorcet loser criterion or the mutual majority criterion implies the majority loser criterion. However, the Condorcet criterion does not imply the majority loser criterion, since the minimax method satisfies the Condorcet but not the majority loser criterion.