O-GlcNAc (short for O-linked GlcNAc or O-linked β-N-acetylglucosamine) is a reversible enzymatic post-translational modification that is found on serine and threonine residues of nucleocytoplasmic proteins. The modification is characterized by a β-glycosidic bond between the hydroxyl group of serine or threonine side chains and N-acetylglucosamine (GlcNAc). O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more rapidly than the proteins which it modifies. O-GlcNAc is conserved across metazoans.
Due to the dynamic nature of O-GlcNAc and its presence on serine and threonine residues, O-GlcNAcylation is similar to protein phosphorylation in some respects. While there are roughly 500 kinases and 150 phosphatases that regulate protein phosphorylation in humans, there are only 2 enzymes that regulate the cycling of O-GlcNAc: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) catalyze the addition and removal of O-GlcNAc, respectively. OGT utilizes UDP-GlcNAc as the donor sugar for sugar transfer.
First reported in 1984, this post-translational modification has since been identified on over 5,000 proteins. Numerous functional roles for O-GlcNAcylation have been reported including crosstalking with serine/threonine phosphorylation, regulating protein-protein interactions, altering protein structure or enzyme activity, changing protein subcellular localization, and modulating protein stability and degradation. Numerous components of the cell's transcription machinery have been identified as being modified by O-GlcNAc, and many studies have reported links between O-GlcNAc, transcription, and epigenetics. Many other cellular processes are influenced by O-GlcNAc such as apoptosis, the cell cycle, and stress responses.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Protein phosphorylation is a reversible post-translational modification of proteins in which an amino acid residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group. Phosphorylation alters the structural conformation of a protein, causing it to become either activated or deactivated, or otherwise modifying its function. Approximately 13000 human proteins have sites that are phosphorylated. The reverse reaction of phosphorylation is called dephosphorylation, and is catalyzed by protein phosphatases.
O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity.
Explores Tau pathologies in Alzheimer's and related disorders, covering hyperphosphorylation, propagation, genetic associations, and therapeutic interventions.
Explores the biosynthesis and endocytosis pathways of vesicular transport in the cell's Golgi apparatus.
Explores the development of epithelial and glandular tissues, focusing on exocrine and endocrine glands, mucin secretion, and glandular cell morphology.
AMP-activated Protein Kinase (AMPK) is a central regulator of energy homeostasis and a promising drug target for metabolic disorders. It exists as complexes of three subunits, a catalytic alpha, and two regulatory beta and gamma subunits. The regulation of ...
Keap1 is associated with cytoprotective signaling. These roles of Keap1 typically focus on its role as a degrader of the antioxidant response (AR) transcription factor, Nrf2, and the inhibition of this process upon Keap1 labeling by electrophiles. However, ...
Weinheim2023
O-linked N-acetylglucosamine (O-GlcNAc) is an endogenous form of glycosylation that alters the structure of alpha-synuclein amyloid fibrils and attenuates their pathogenetic properties. The modified fibrils have a significantly reduced ability to seed the ...