**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Complete measure

Summary

In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (X, Σ, μ) is complete if and only if
The need to consider questions of completeness can be illustrated by considering the problem of product spaces.
Suppose that we have already constructed Lebesgue measure on the real line: denote this measure space by We now wish to construct some two-dimensional Lebesgue measure on the plane as a product measure. Naively, we would take the sigma-algebra on to be the smallest sigma-algebra containing all measurable "rectangles" for
While this approach does define a measure space, it has a flaw. Since every singleton set has one-dimensional Lebesgue measure zero,
for subset of However, suppose that is a non-measurable subset of the real line, such as the Vitali set. Then the -measure of is not defined but
and this larger set does have -measure zero. So this "two-dimensional Lebesgue measure" as just defined is not complete, and some kind of completion procedure is required.
Given a (possibly incomplete) measure space (X, Σ, μ), there is an extension (X, Σ0, μ0) of this measure space that is complete. The smallest such extension (i.e. the smallest σ-algebra Σ0) is called the completion of the measure space.
The completion can be constructed as follows:
let Z be the set of all the subsets of the zero-μ-measure subsets of X (intuitively, those elements of Z that are not already in Σ are the ones preventing completeness from holding true);
let Σ0 be the σ-algebra generated by Σ and Z (i.e. the smallest σ-algebra that contains every element of Σ and of Z);
μ has an extension μ0 to Σ0 (which is unique if μ is σ-finite), called the outer measure of μ, given by the infimum
Then (X, Σ0, μ0) is a complete measure space, and is the completion of (X, Σ, μ).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (30)

Related publications (183)

Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...

Ludy Juliana González Villamizar

Time has always been a central factor in understanding the challenges of daily mobility. For a long time, and still today, methods of economic evaluation of transport projects have monetized time savings so that they can be included in the cost–benefit ana ...

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...

Related courses (32)

Related concepts (8)

Related units (6)

MATH-432: Probability theory

The course is based on Durrett's text book
Probability: Theory and Examples.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

CS-308: Introduction to quantum computation

The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch

MATH-303: Measure and integration

Dans ce cours on définira et étudiera la notion de mesure et d'intégrale contre une mesure dans un cadre général, généralisant ce qui a été fait en Analyse IV dans le cas réel.
On verra aussi quelques

Number line

In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers.

Σ-finite measure

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.

Fubini's theorem

In mathematical analysis, Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value. Fubini's theorem implies that two iterated integrals are equal to the corresponding double integral across its integrands.

Related lectures (123)

Quantum Computing: Qubit Testing

Covers classical testing of qubits, including measuring in different bases and obtaining uniform results.

Effective Field Theory: Testing Weak Interactions

Explores effective field theory for testing weak interactions and parity violation through forward-backward asymmetry.

Circular Trigonometry: Understanding Geometric Angles

Explores the concept of angles in circular trigonometry, emphasizing geometric angles and their properties.