In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R (whose identities are the zero 0 and one 1), where each block along the diagonal, called a Jordan block, has the following form: Every Jordan block is specified by its dimension n and its eigenvalue , and is denoted as Jλ,n. It is an matrix of zeroes everywhere except for the diagonal, which is filled with and for the superdiagonal, which is composed of ones. Any block diagonal matrix whose blocks are Jordan blocks is called a Jordan matrix. This (n1 + ⋯ + nr) × (n1 + ⋯ + nr) square matrix, consisting of r diagonal blocks, can be compactly indicated as or , where the i-th Jordan block is Jλi,ni. For example, the matrix is a 10 × 10 Jordan matrix with a 3 × 3 block with eigenvalue 0, two 2 × 2 blocks with eigenvalue the imaginary unit i, and a 3 × 3 block with eigenvalue 7. Its Jordan-block structure is written as either or diag(J0,3, Ji,2, Ji,2, J7,3). Any n × n square matrix A whose elements are in an algebraically closed field K is similar to a Jordan matrix J, also in , which is unique up to a permutation of its diagonal blocks themselves. J is called the Jordan normal form of A and corresponds to a generalization of the diagonalization procedure. A diagonalizable matrix is similar, in fact, to a special case of Jordan matrix: the matrix whose blocks are all 1 × 1. More generally, given a Jordan matrix , that is, whose kth diagonal block, , is the Jordan block Jλk,mk and whose diagonal elements may not all be distinct, the geometric multiplicity of for the matrix J, indicated as , corresponds to the number of Jordan blocks whose eigenvalue is λ. Whereas the index of an eigenvalue for J, indicated as , is defined as the dimension of the largest Jordan block associated to that eigenvalue. The same goes for all the matrices A similar to J, so can be defined accordingly with respect to the Jordan normal form of A for any of its eigenvalues .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-453: Computational linear algebra
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
MATH-479: Linear algebraic groups
The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
Show more
Related lectures (35)
Matrix Exponential and Jordan Normal Form
Covers the matrix exponential, its convergence properties, and the Jordan normal form.
Jordan Normal Form
Covers the Jordan Normal Form and the identification of torsion blocks within matrices.
Jordan Normal Form
Covers the Jordan Normal Form theorem and invariance of kernels under transformations.
Show more
Related publications (30)

An optimal preconditioned FFT-accelerated finite element solver for homogenization

Till Junge, Ali Falsafi, Martin Ladecký

We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
ELSEVIER SCIENCE INC2023

Fast deterministic and randomized algorithms for low-rank approximation, matrix functions, and trace estimation

Alice Cortinovis

In this thesis we propose and analyze algorithms for some numerical linear algebra tasks: finding low-rank approximations of matrices, computing matrix functions, and estimating the trace of matrices.In the first part, we consider algorithms for building l ...
EPFL2022

DIVIDE-AND-CONQUER METHODS FOR FUNCTIONS OF MATRICES WITH BANDED OR HIERARCHICAL LOW-RANK STRUCTURE\ast

Daniel Kressner, Stefano Massei, Alice Cortinovis

This work is concerned with approximating matrix functions for banded matrices, hierarchically semiseparable matrices, and related structures. We develop a new divide-and-conquer method based on (rational) Krylov subspace methods for performing low-rank up ...
SIAM PUBLICATIONS2022
Show more
Related concepts (7)
Analytic function of a matrix
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.
Generalized eigenvector
In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
Matrix exponential
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by eX or exp(X), is the n×n matrix given by the power series where is defined to be the identity matrix with the same dimensions as .
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.