FIN-407: Machine learning in financeThis course aims to give an introduction to the application of machine learning to finance, focusing on the problems of portfolio optimization and hedging, as well as textual analysis. A particular fo
EE-726: Sparse stochastic processesWe cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
EE-611: Linear system theoryThe course covers control theory and design for linear time-invariant systems : (i) Mathematical descriptions of systems (ii) Multivariables realizations; (iii) Stability ; (iv) Controllability and Ob
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MATH-251(b): Numerical analysisThe students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.