Exact functorIn mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled. Let P and Q be abelian categories, and let F: P→Q be a covariant additive functor (so that, in particular, F(0) = 0).
Five lemmaIn mathematics, especially homological algebra and other applications of theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also works in the , for example. The five lemma can be thought of as a combination of two other theorems, the four lemmas, which are to each other. Consider the following commutative diagram in any (such as the category of abelian groups or the category of vector spaces over a given field) or in the category of groups.
Yoneda lemmaIn mathematics, the Yoneda lemma is arguably the most important result in . It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the of any into a (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category.
Snake lemmaThe snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every and is a crucial tool in homological algebra and its applications, for instance in algebraic topology. Homomorphisms constructed with its help are generally called connecting homomorphisms. In an (such as the category of abelian groups or the category of vector spaces over a given field), consider a commutative diagram: where the rows are exact sequences and 0 is the zero object.
Commutative diagramIn mathematics, and especially in , a commutative diagram is a such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra. A commutative diagram often consists of three parts: (also known as vertices) morphisms (also known as arrows or edges) paths or composites In algebra texts, the type of morphism can be denoted with different arrow usages: A monomorphism may be labeled with a or a .
Abelian categoryIn mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.
Exact sequenceAn exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an ) such that the of one morphism equals the kernel of the next. In the context of group theory, a sequence of groups and group homomorphisms is said to be exact at if . The sequence is called exact if it is exact at each for all , i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite.