Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena. Two of the most highly abstract areas of modern mathematics are and model theory.
Many areas of mathematics began with the study of real world problems, before the underlying rules and concepts were identified and defined as abstract structures. For example, geometry has its origins in the calculation of distances and areas in the real world, and algebra started with methods of solving problems in arithmetic.
Abstraction is an ongoing process in mathematics and the historical development of many mathematical topics exhibits a progression from the concrete to the abstract. For example, the first steps in the abstraction of geometry were historically made by the ancient Greeks, with Euclid's Elements being the earliest extant documentation of the axioms of plane geometry—though Proclus tells of an earlier axiomatisation by Hippocrates of Chios. In the 17th century, Descartes introduced Cartesian co-ordinates which allowed the development of analytic geometry. Further steps in abstraction were taken by Lobachevsky, Bolyai, Riemann and Gauss, who generalised the concepts of geometry to develop non-Euclidean geometries. Later in the 19th century, mathematicians generalised geometry even further, developing such areas as geometry in n dimensions, projective geometry, affine geometry and finite geometry. Finally Felix Klein's "Erlangen program" identified the underlying theme of all of these geometries, defining each of them as the study of properties invariant under a given group of symmetries. This level of abstraction revealed connections between geometry and abstract algebra.
In mathematics, abstraction can be advantageous in the following ways:
It reveals deep connections between different areas of mathematics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
Explores implicit function types and their application in a conference management system, discussing the trade-off between types and terms in implicit parameters.
Explores modular programming, emphasizing the separation of interface and implementation in modules and the use of make and Makefile for managing dependencies.
An abstract structure is an abstraction that might be of the geometric spaces or a set structure, or a hypostatic abstraction that is defined by a set of mathematical theorems and laws, properties and relationships in a way that is logically if not always historically independent of the structure of contingent experiences, for example, those involving physical objects. Abstract structures are studied not only in logic and mathematics but in the fields that apply them, as computer science and computer graphics, and in the studies that reflect on them, such as philosophy (especially the philosophy of mathematics).
Abstraction is a conceptual process wherein general rules and concepts are derived from the usage and classification of specific examples, literal (real or concrete) signifiers, first principles, or other methods. "An abstraction" is the outcome of this process—a concept that acts as a common noun for all subordinate concepts and connects any related concepts as a group, field, or category. Conceptual abstractions may be formed by filtering the information content of a concept or an observable phenomenon, selecting only those aspects which are relevant for a particular purpose.
This work is a continuation of the Enoncé Théorique, Matters of Care: About the Entanglements of Waters and More-Than-Human Worlds, which explores how caring about water can help us understand the intertwining of our environments and identify the places in ...
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
The essay focuses on the early work of Aldo Rossi, for the most part produced in collaboration with Gianugo Polesello, Luca Meda and Giorgio Grassi. In the early 1960s Rossi attempted to define a design method in which the juxtaposition of a limited set of ...