Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena. Two of the most highly abstract areas of modern mathematics are and model theory.
Many areas of mathematics began with the study of real world problems, before the underlying rules and concepts were identified and defined as abstract structures. For example, geometry has its origins in the calculation of distances and areas in the real world, and algebra started with methods of solving problems in arithmetic.
Abstraction is an ongoing process in mathematics and the historical development of many mathematical topics exhibits a progression from the concrete to the abstract. For example, the first steps in the abstraction of geometry were historically made by the ancient Greeks, with Euclid's Elements being the earliest extant documentation of the axioms of plane geometry—though Proclus tells of an earlier axiomatisation by Hippocrates of Chios. In the 17th century, Descartes introduced Cartesian co-ordinates which allowed the development of analytic geometry. Further steps in abstraction were taken by Lobachevsky, Bolyai, Riemann and Gauss, who generalised the concepts of geometry to develop non-Euclidean geometries. Later in the 19th century, mathematicians generalised geometry even further, developing such areas as geometry in n dimensions, projective geometry, affine geometry and finite geometry. Finally Felix Klein's "Erlangen program" identified the underlying theme of all of these geometries, defining each of them as the study of properties invariant under a given group of symmetries. This level of abstraction revealed connections between geometry and abstract algebra.
In mathematics, abstraction can be advantageous in the following ways:
It reveals deep connections between different areas of mathematics.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
An abstract structure is an abstraction that might be of the geometric spaces or a set structure, or a hypostatic abstraction that is defined by a set of mathematical theorems and laws, properties and relationships in a way that is logically if not always historically independent of the structure of contingent experiences, for example, those involving physical objects. Abstract structures are studied not only in logic and mathematics but in the fields that apply them, as computer science and computer graphics, and in the studies that reflect on them, such as philosophy (especially the philosophy of mathematics).
L’abstraction est l'opération mentale, de l'esprit par laquelle les propriétés générales, universelles et nécessaires d'un objet sont distinguées de ses propriétés particulières et contingentes. Par cette opération, notre pensée prend une distance par rapport à l'expérience sensible et forme l'ensemble de nos idées qui seront consignées dans le langage. L'opération d'abstraction permet de distinguer entre l'abstrait et le concret. Ceux-ci forment une opposition conceptuelle fondamentale en philosophie.
Explore les types de fonctions implicites et leur application dans un système de gestion de séance de cours, en discutant du compromis entre les types et les termes dans les paramètres implicites.
Explore la programmation modulaire, en mettant l'accent sur la séparation de l'interface et de l'implémentation dans les modules et l'utilisation de make et Makefile pour gérer les dépendances.
The essay focuses on the early work of Aldo Rossi, for the most part produced in collaboration with Gianugo Polesello, Luca Meda and Giorgio Grassi. In the early 1960s Rossi attempted to define a design method in which the juxtaposition of a limited set of ...
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
This work is a continuation of the Enoncé Théorique, Matters of Care: About the Entanglements of Waters and More-Than-Human Worlds, which explores how caring about water can help us understand the intertwining of our environments and identify the places in ...