Five lemmaIn mathematics, especially homological algebra and other applications of theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also works in the , for example. The five lemma can be thought of as a combination of two other theorems, the four lemmas, which are to each other. Consider the following commutative diagram in any (such as the category of abelian groups or the category of vector spaces over a given field) or in the category of groups.
Snake lemmaThe snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every and is a crucial tool in homological algebra and its applications, for instance in algebraic topology. Homomorphisms constructed with its help are generally called connecting homomorphisms. In an (such as the category of abelian groups or the category of vector spaces over a given field), consider a commutative diagram: where the rows are exact sequences and 0 is the zero object.
Isomorphism theoremsIn mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.
Exact sequenceAn exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an ) such that the of one morphism equals the kernel of the next. In the context of group theory, a sequence of groups and group homomorphisms is said to be exact at if . The sequence is called exact if it is exact at each for all , i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite.