Lemme des cinqEn algèbre homologique, le lemme des cinq permet d'établir l'injectivité et la surjectivité des flèches dans les diagrammes commutatifs. Précisément : en supposant 1) que le diagramme ci-dessous est commutatif 2) que les deux lignes du diagramme sont exactes 3) que et sont des isomorphismes 4) que est un épimorphisme et un monomorphisme alors est un isomorphisme. Ceci vaut non seulement dans une catégorie abélienne (comme celle des groupes abéliens, ou celle des espaces vectoriels sur un corps fixé) mais aussi, par exemple, dans la catégorie des groupes.
Lemme du serpentLe lemme du serpent, en mathématiques, et en particulier en homologie et cohomologie, est un énoncé valide dans toute catégorie abélienne ; c'est un outil des plus importants pour la construction de suites exactes, objets omniprésents en homologie et ses applications, par exemple en topologie algébrique. Les morphismes ainsi construits sont généralement appelés « morphismes connectants ».
Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.
Suite exacteEn mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.