Concept

Lie algebra extension

Summary
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges. Starting with a polynomial loop algebra over finite-dimensional simple Lie algebra and performing two extensions, a central extension and an extension by a derivation, one obtains a Lie algebra which is isomorphic with an untwisted affine Kac–Moody algebra. Using the centrally extended loop algebra one may construct a current algebra in two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt algebra. Central extensions are needed in physics, because the symmetry group of a quantized system usually is a central extension of the classical symmetry group, and in the same way the corresponding symmetry Lie algebra of the quantum system is, in general, a central extension of the classical symmetry algebra. Kac–Moody algebras have been conjectured to be symmetry groups of a unified superstring theory. The centrally extended Lie algebras play a dominant role in quantum field theory, particularly in conformal field theory, string theory and in M-theory. A large portion towards the end is devoted to background material for applications of Lie algebra extensions, both in mathematics and in physics, in areas where they are actually useful. A parenthetical link, (background material), is provided where it might be beneficial. Due to the Lie correspondence, the theory, and consequently the history of Lie algebra extensions, is tightly linked to the theory and history of group extensions. A systematic study of group extensions was performed by the Austrian mathematician Otto Schreier in 1923 in his PhD thesis and later published.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.