In statistics and coding theory, a Hamming space (named after American mathematician Richard Hamming) is usually the set of all binary strings of length N. It is used in the theory of coding signals and transmission.
More generally, a Hamming space can be defined over any alphabet (set) Q as the set of words of a fixed length N with letters from Q. If Q is a finite field, then a Hamming space over Q is an N-dimensional vector space over Q. In the typical, binary case, the field is thus GF(2) (also denoted by Z2).
In coding theory, if Q has q elements, then any subset C (usually assumed of cardinality at least two) of the N-dimensional Hamming space over Q is called a q-ary code of length N; the elements of C are called codewords. In the case where C is a linear subspace of its Hamming space, it is called a linear code. A typical example of linear code is the Hamming code. Codes defined via a Hamming space necessarily have the same length for every codeword, so they are called block codes when it is necessary to distinguish them from variable-length codes that are defined by unique factorization on a monoid.
The Hamming distance endows a Hamming space with a metric, which is essential in defining basic notions of coding theory such as error detecting and error correcting codes.
Hamming spaces over non-field alphabets have also been considered, especially over finite rings (most notably over Z4) giving rise to modules instead of vector spaces and ring-linear codes (identified with submodules) instead of linear codes. The typical metric used in this case the Lee distance. There exist a Gray isometry between (i.e. GF(22m)) with the Hamming distance and (also denoted as GR(4,m)) with the Lee distance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The reflected binary code (RBC), also known as reflected binary (RB) or Gray code after Frank Gray, is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). For example, the representation of the decimal value "1" in binary would normally be "" and "2" would be "". In Gray code, these values are represented as "" and "". That way, incrementing a value from 1 to 2 requires only one bit to change, instead of two.
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding). Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g.
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
A hash proof system (HPS) is a form of implicit proof of membership to a language. Out of the very few existing post-quantum HPS, most are based on languages of ciphertexts of code-based or lattice-based cryptosystems and inherently suffer from a gap cause ...
We start this short note by introducing two remarkable mathematical objects: the E8E8 root lattice Lambda8Lambda8 in 8-dimensional Euclidean space and the Leech lattice Lambda24Lambda24 in 24-dimensional space. These two lattices stand out among their lat ...
Non-malleable codes (NMCs) protect sensitive data against degrees of corruption that prohibit error detection, ensuring instead that a corrupted codeword decodes correctly or to something that bears little relation to the original message. The split-state ...