Azurite is a soft, deep-blue copper mineral produced by weathering of copper ore deposits. During the early 19th century, it was also known as chessylite, after the type locality at Chessy-les-Mines near Lyon, France. The mineral, a basic carbonate with the chemical formula Cu3(CO3)2(OH)2, has been known since ancient times, and was mentioned in Pliny the Elder's Natural History under the Greek name (κυανός: "deep blue," root of English cyan) and the Latin name caeruleum. Copper (Cu2+) gives it its blue color. Azurite has the formula Cu3(CO3)2(OH)2, with the copper(II) cations linked to two different anions, carbonate and hydroxide. It is one of two relatively common basic copper(II) carbonate minerals, the other being bright green malachite. Aurichalcite is a rare basic carbonate of copper and zinc. Simple copper carbonate (CuCO3) is not known to exist in nature, due to the high affinity of the Cu2+ ion for the hydroxide anion HO-. Azurite crystallizes in the monoclinic system. Large crystals are dark blue, often prismatic. Azurite specimens can be massive to nodular or can occur as drusy crystals lining a cavity. Azurite has a Mohs hardness of 3.5 to 4. The specific gravity of azurite is 3.7 to 3.9. Characteristic of a carbonate, specimens effervesce upon treatment with hydrochloric acid. The combination of deep blue color and effervescence when moistened with hydrochloric acid are identifying characteristics of the mineral. The optical properties (color, intensity) of minerals such as azurite and malachite are characteristic of copper(II). Many coordination complexes of copper(II) exhibit similar colors. According to crystal field theory, the color results from low energy d-d transitions associated with the d9 metal center. Azurite is unstable in open air compared to malachite, and often is pseudomorphically replaced by malachite.
Hubert Girault, Niels Erik Lion