In functional analysis, compact operators are linear operators on Banach spaces that map bounded sets to relatively compact sets. In the case of a Hilbert space H, the compact operators are the closure of the finite rank operators in the uniform operator topology. In general, operators on infinite-dimensional spaces feature properties that do not appear in the finite-dimensional case, i.e. for matrices. The compact operators are notable in that they share as much similarity with matrices as one can expect from a general operator. In particular, the spectral properties of compact operators resemble those of square matrices.
This article first summarizes the corresponding results from the matrix case before discussing the spectral properties of compact operators. The reader will see that most statements transfer verbatim from the matrix case.
The spectral theory of compact operators was first developed by F. Riesz.
The classical result for square matrices is the Jordan canonical form, which states the following:
Theorem. Let A be an n × n complex matrix, i.e. A a linear operator acting on Cn. If λ1...λk are the distinct eigenvalues of A, then Cn can be decomposed into the invariant subspaces of A
The subspace Yi = Ker(λi − A)m where Ker(λi − A)m = Ker(λi − A)m+1. Furthermore, the poles of the resolvent function ζ → (ζ − A)−1 coincide with the set of eigenvalues of A.
Preliminary Lemmas
The theorem claims several properties of the operator λ − C where λ ≠ 0.
Without loss of generality, it can be assumed that λ = 1.
Therefore we consider I − C, I being the identity operator. The proof will require two lemmas.
This fact will be used repeatedly in the argument leading to the theorem.
Notice that when X is a Hilbert space, the lemma is trivial.
Concluding the Proof
As in the matrix case, the above spectral properties lead to a decomposition of X into invariant subspaces of a compact operator C. Let λ ≠ 0 be an eigenvalue of C; so λ is an isolated point of σ(C).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by Prim(U(g)) the set of (graded) primitive ideals of the enveloping algebra U(g) of a nilpotent Lie superalgebra g and Ad0 the adjoint ...
The bending terms in a shell are small with respect to membrane ones as the thickness tends to zero. Consequently, the membrane approximation gives a good description of vibration properties of a thin shell. This vibration problem is associated with a non- ...
In this work, we consider the approximation of Hilbert space-valued meromorphic functions that arise as solution maps of parametric PDEs whose operator is the shift of an operator with normal and compact resolvent, e.g., the Helmholtz equation. In this res ...