Concept

Spectrum (functional analysis)

Summary
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on . The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator R on the Hilbert space l2, This has no eigenvalues, since if Rx=λx then by expanding this expression we see that x1=0, x2=0, etc. On the other hand, 0 is in the spectrum because although the operator R − 0 (i.e. R itself) is invertible, the inverse is defined on a set which is not dense in l2. In fact every bounded linear operator on a complex Banach space must have a non-empty spectrum. The notion of spectrum extends to unbounded (i.e. not necessarily bounded) operators. A complex number λ is said to be in the spectrum of an unbounded operator defined on domain if there is no bounded inverse defined on the whole of If T is closed (which includes the case when T is bounded), boundedness of follows automatically from its existence. The space of bounded linear operators B(X) on a Banach space X is an example of a unital Banach algebra. Since the definition of the spectrum does not mention any properties of B(X) except those that any such algebra has, the notion of a spectrum may be generalised to this context by using the same definition verbatim.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood