**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Spectrum (functional analysis)

Summary

In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if
either has no set-theoretic inverse;
or the set-theoretic inverse is either unbounded or defined on a non-dense subset.
Here, is the identity operator.
By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics.
The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator R on the Hilbert space l2,
This has no eigenvalues, since if Rx=λx then by expanding this expression we see that x1=0, x2=0, etc. On the other hand, 0 is in the spectrum because although the operator R − 0 (i.e. R itself) is invertible, the inverse is defined on a set which is not dense in l2. In fact every bounded linear operator on a complex Banach space must have a non-empty spectrum.
The notion of spectrum extends to unbounded (i.e. not necessarily bounded) operators. A complex number λ is said to be in the spectrum of an unbounded operator defined on domain if there is no bounded inverse defined on the whole of If T is closed (which includes the case when T is bounded), boundedness of follows automatically from its existence.
The space of bounded linear operators B(X) on a Banach space X is an example of a unital Banach algebra. Since the definition of the spectrum does not mention any properties of B(X) except those that any such algebra has, the notion of a spectrum may be generalised to this context by using the same definition verbatim.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (93)

Related units (1)

Related concepts (25)

Related people (15)

Related courses (32)

Related lectures (162)

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Normal operator

In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its hermitian adjoint N*, that is: NN* = N*N. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N−1 Hermitian operators (i.e., self-adjoint operators): N* = N Skew-Hermitian operators: N* = −N positive operators: N = MM* for some M (so N is self-adjoint).

Operator theory

In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

MATH-302: Functional analysis I

Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d

PHYS-331: Functional analysis (for PH)

Ce cours ambitionne de présenter les mathématiques de la mécanique quantique, et plus généralement de la physique quantique. Il s'adresse essentiellement aux physiciens, ou a des mathématiciens intére

The Spectrum: Operators and Observables in Quantum Physics

Covers the concept of the spectrum in quantum physics, including invertibility, eigenvalues, and observables.

Nonlocal Games

Explores nonlocal games using quantum mechanics to achieve unexplainable correlations.

Semi classical Approximation: Fixed Energy Propagator

Explores the semi classical approximation for the fixed energy propagator in quantum physics, emphasizing barrier penetration and saddle points.

Daniel Kressner, Meiyue Shao, Yuxin Ma

The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...

Michaël Unser, Sebastian Jonas Neumayer

The Lizorkin space is well suited to the study of operators like fractional Laplacians and the Radon transform. In this paper, we show that the space is unfortunately not complemented in the Schwartz space. In return, we show that it is dense in C0(Double- ...

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...