Concept

Electromagnetic stress–energy tensor

Summary
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +). When using the metric with signature (+ − − −), the expression on the right of the equals sign will have opposite sign. Explicitly in matrix form: where is the Poynting vector, is the Maxwell stress tensor, and c is the speed of light. Thus, is expressed and measured in SI pressure units (pascals). The permittivity of free space and permeability of free space in cgs-Gaussian units are then: and in explicit matrix form: where Poynting vector becomes: The stress–energy tensor for an electromagnetic field in a dielectric medium is less well understood and is the subject of the unresolved Abraham–Minkowski controversy. The element of the stress–energy tensor represents the flux of the μth-component of the four-momentum of the electromagnetic field, , going through a hyperplane ( is constant). It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space–time) in general relativity. The electromagnetic stress–energy tensor has several algebraic properties: The symmetry of the tensor is as for a general stress–energy tensor in general relativity. The trace of the energy–momentum tensor is a Lorentz scalar; the electromagnetic field (and in particular electromagnetic waves) has no Lorentz-invariant energy scale, so its energy–momentum tensor must have a vanishing trace. This tracelessness eventually relates to the masslessness of the photon.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.