The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.
In the relativistic formulation of electromagnetism, the Maxwell's tensor appears as a part of the electromagnetic stress–energy tensor which is the electromagnetic component of the total stress–energy tensor. The latter describes the density and flux of energy and momentum in spacetime.
As outlined below, the electromagnetic force is written in terms of and . Using vector calculus and Maxwell's equations, symmetry is sought for in the terms containing and , and introducing the Maxwell stress tensor simplifies the result.
in the above relation for conservation of momentum, is the momentum flux density and plays a role similar to in Poynting's theorem.
The above derivation assumes complete knowledge of both and (both free and bounded charges and currents). For the case of nonlinear materials (such as magnetic iron with a BH-curve), the nonlinear Maxwell stress tensor must be used.
In physics, the Maxwell stress tensor is the stress tensor of an electromagnetic field. As derived above in SI units, it is given by:
where is the electric constant and is the magnetic constant, is the electric field, is the magnetic field and is Kronecker's delta. In Gaussian cgs unit, it is given by:
where is the magnetizing field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
Le cours couvre deux grands chapitres de la physique: l'étude des fluides et l'électromagnétisme. Une introduction aux ondes est également faite pour pouvoir étudier les solutions des équations de l'h
Le cours aborde les principales méthodes pour l'analyse de systèmes électromécaniques. Une étude des grandeurs physiques magnétiques est suivie par la conversion de l'énergie électrique en énergie méc
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
We study two-point functions of local operators and their spectral representation in UV complete quantum field theories in generic dimensions focusing on conserved currents and the stress-tensor. We establish the connection with the central charges of the ...
SPRINGER2022
, ,
The hydromechanical response of a Wyoming-type bentonite (MX-80) and its interface with steel was studied in terms of shear resistance under different hydration levels. A series of shear tests under constant normal stress were performed in total suction co ...
2023
, ,
Deep heat mining requires activation of slip on pre-existing geological discontinuities and the creation of hydraulically conductive fracture networks. Fluid injection or diffusion of ground waters can rise the fluid pressure near pre-existing fractures an ...