Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science statistics, and is particularly problematic when frequency data are unduly given causal interpretations. The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling (e.g., through cluster analysis). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. Edward H. Simpson first described this phenomenon in a technical paper in 1951, but the statisticians Karl Pearson (in 1899) and Udny Yule (in 1903) had mentioned similar effects earlier. The name Simpson's paradox was introduced by Colin R. Blyth in 1972. It is also referred to as Simpson's reversal, the Yule–Simpson effect, the amalgamation paradox, or the reversal paradox. Mathematician Jordan Ellenberg argues that Simpson's paradox is misnamed as "there's no contradiction involved, just two different ways to think about the same data" and suggests that its lesson "isn't really to tell us which viewpoint to take but to insist that we keep both the parts and the whole in mind at once." One of the best-known examples of Simpson's paradox comes from a study of gender bias among graduate school admissions to University of California, Berkeley. The admission figures for the fall of 1973 showed that men applying were more likely than women to be admitted, and the difference was so large that it was unlikely to be due to chance. However, when taking into account the information about departments being applied to, the different rejection percentages reveal the different difficulty of getting into the department, and at the same time it showed that women tended to apply to more competitive departments with lower rates of admission, even among qualified applicants (such as in the English department), whereas men tended to apply to less competitive departments with higher rates of admission (such as in the engineering department).
Mats Julius Stensrud, Aaron Leor Sarvet
Anthony Christopher Davison, Valérie Chavez