In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.
In crystallography, space groups are also called the crystallographic or Fedorov groups, and represent a description of the symmetry of the crystal. A definitive source regarding 3-dimensional space groups is the International Tables for Crystallography .
Space groups in 2 dimensions are the 17 wallpaper groups which have been known for several centuries, though the proof that the list was complete was only given in 1891, after the much more difficult classification of space groups had largely been completed.
In 1879 the German mathematician Leonhard Sohncke listed the 65 space groups (called Sohncke groups) whose elements preserve the chirality. More accurately, he listed 66 groups, but both the Russian mathematician and crystallographer Evgraf Fedorov and the German mathematician Arthur Moritz Schoenflies noticed that two of them were really the same. The space groups in three dimensions were first enumerated in 1891 by Fedorov (whose list had two omissions (I3d and Fdd2) and one duplication (Fmm2)), and shortly afterwards in 1891 were independently enumerated by Schönflies (whose list had four omissions (I3d, Pc, Cc, ?) and one duplication (P21m)). The correct list of 230 space groups was found by 1892 during correspondence between Fedorov and Schönflies. later enumerated the groups with a different method, but omitted four groups (Fdd2, I2d, P21d, and P21c) even though he already had the correct list of 230 groups from Fedorov and Schönflies; the common claim that Barlow was unaware of their work is incorrect.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux.
Des travaux pratiques en
In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx.
In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. Such patterns occur frequently in architecture and decorative art. Frieze patterns can be classified into seven types according to their symmetries. The set of symmetries of a frieze pattern is called a frieze group. Frieze groups are two-dimensional line groups, having repetition in only one direction. They are related to the more complex wallpaper groups, which classify patterns that are repetitive in two directions, and crystallographic groups, which classify patterns that are repetitive in three directions.
A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformations, with function composition as the group operation. Thus, a wallpaper group (or plane symmetry group or plane crystallographic group) is in a mathematical classification of a two‐dimensional repetitive pattern, based on the symmetries in the pattern.
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...
We developed and implemented a multi-target multi-fidelity workflow to explore the chemical space of antiperovskite materials with general formula X(3)BA (X=Li, Na, Mg) and Pm-3m space group, searching for stable high-performance solid state electrolytes f ...
We report a combined polarized and unpolarized neutron diffraction study on a multiferroic Sr2CoSi2O7 (SCSO) single crystal below and above the antiferromagnetic ordering temperature TN = 6.5 K. Unpolarized neutron diffraction measurements at 15 K confirm ...