Le groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme.
Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel.
La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
L'Union internationale de cristallographie publie des Tables internationales de cristallographie ; dans le volume A chaque groupe d'espace et ses opérations de symétrie sont représentés graphiquement et mathématiquement.
L'ensemble des groupes d'espace résulte de la combinaison d'une unité de base (ou motif) avec des opérations ponctuelles de symétrie (réflexion, rotation et inversion), auxquelles s'ajoutent des opérations de translation, translation dans le plan ou combinée à une réflexion ou une rotation.
Cependant le nombre de groupes distincts est inférieur à celui des combinaisons, certaines étant isomorphes, c'est-à-dire conduisant au même groupe d'espace. Ce résultat peut être démontré mathématiquement par la théorie des groupes.
Les opérations de translation comprennent :
la translation selon les vecteurs de base du réseau, qui fait passer d'une maille à la maille voisine ;
les translations combinées aux réflexions et aux rotations :
rototranslations (élément de symétrie : axe hélicoïdal) : une rotation suivant un axe, combinée à une translation selon la direction de l'axe, et dont l'amplitude est une fraction des vecteurs de base. Ils sont notés par un nombre n décrivant le degré de rotation, où n est le nombre de fois où la rotation doit être appliquée pour obtenir l'identité (3 représente donc par exemple une rotation d'un tiers de tour, soit 2π/3). Le degré de translation est alors noté par un indice qui indique à quelle fraction du vecteur du réseau correspond la translation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante. thumb|Figure 1 : exemple de rotation En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace).
Un groupe de frise, en mathématiques, est un sous-groupe du groupe des isométries affines du plan euclidien tel que l'ensemble des translations qu'il contient forme lui-même un groupe isomorphe au groupe Z des entiers relatifs. Une frise est alors une partie du plan telle que l'ensemble des isométries qui la laissent globalement invariante est un groupe de frise. Usuellement, une frise est représentée par un motif se répétant périodiquement dans une direction donnée. Ce concept modélise les frises utilisées en architecture ou en décoration.
Un groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux.
Des travaux pratiques en
Explore le concept de (co)limites dans l'algèbre homotopique, en discutant des relations entre les functeurs, des cas particuliers, et les propriétés universelles des colimites et des limites.
We report a combined polarized and unpolarized neutron diffraction study on a multiferroic Sr2CoSi2O7 (SCSO) single crystal below and above the antiferromagnetic ordering temperature TN = 6.5 K. Unpolarized neutron diffraction measurements at 15 K confirm ...
AMER PHYSICAL SOC2023
,
We developed and implemented a multi-target multi-fidelity workflow to explore the chemical space of antiperovskite materials with general formula X(3)BA (X=Li, Na, Mg) and Pm-3m space group, searching for stable high-performance solid state electrolytes f ...
WILEY-V C H VERLAG GMBH2023
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...