Concept

Hardware-assisted virtualization

In computing, hardware-assisted virtualization is a platform virtualization approach that enables efficient full virtualization using help from hardware capabilities, primarily from the host processors. A full virtualization is used to emulate a complete hardware environment, or virtual machine, in which an unmodified guest operating system (using the same instruction set as the host machine) effectively executes in complete isolation. Hardware-assisted virtualization was added to x86 processors (Intel VT-x, AMD-V or VIA VT) in 2005, 2006 and 2010 (respectively). Hardware-assisted virtualization is also known as accelerated virtualization; Xen calls it hardware virtual machine (HVM), and Virtual Iron calls it native virtualization. Timeline of virtualization development Hardware-assisted virtualization first appeared on the IBM System/370 in 1972, for use with VM/370, the first virtual machine operating system. With the increasing demand for high-definition computer graphics (e.g. CAD), virtualization of mainframes lost some attention in the late 1970s, when the upcoming minicomputers fostered resource allocation through distributed computing, encompassing the commoditization of microcomputers. IBM offers hardware virtualization for its IBM Power Systems hardware for AIX, Linux and IBM i, and for its IBM Z mainframes. IBM refers to its specific form of hardware virtualization as "logical partition", or more commonly as LPAR. The increase in compute capacity per x86 server (and in particular the substantial increase in modern networks' bandwidths) rekindled interest in data-center based computing which is based on virtualization techniques. The primary driver was the potential for server consolidation: virtualization allowed a single server to cost-efficiently consolidate compute power on multiple underutilized dedicated servers. The most visible hallmark of a return to the roots of computing is cloud computing, which is a synonym for data center based computing (or mainframe-like computing) through high bandwidth networks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-728: Topics on Datacenter Design
Modern datacenters with thousands of servers and multi-megawatt power budgets form the backbone of our digital universe. ln this course, we will survey a broad and comprehensive spectrum of datacenter
CS-522: Principles of computer systems
This advanced graduate course teaches the key design principles underlying successful computer and communication systems, and shows how to solve real problems with ideas, techniques, and algorithms fr
CS-470: Advanced computer architecture
The course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explo
Related lectures (32)
Virtualization: Principles and Applications
Explores virtualization principles, implementation, and high availability in cloud computing.
CPU Virtualization
Explores CPU virtualization, covering key principles and the evolution of virtualization technologies.
Dependability Overview
Explores dependability in industrial automation, covering reliability, safety, fault characteristics, and examples of failure sources in various industries.
Show more
Related publications (59)

CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds

David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Ali Pahlevan

Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limi ...
2024

A RISC-V Extension to Minimize Privileges of Enclave Runtimes

Edouard Bugnion, Neelu Shivprakash Kalani

In confidential computing, the view of the system software is Manichean: the host operating system is untrusted and the TEE runtime system is fully trusted. However, the runtime system is often as complex as a full operating system, and thus is not free fr ...
ACM2023

Structured and tiled-based pruning of Deep Learning models targeting FPGA implementations

Alexandre Schmid, Lizeth Gonzalez Carabarin

Model compression techniques have lead to a reduction of size and number of computations of Deep Learning models. However, techniques such as pruning mostly lack of a real co-optimization with hardware platforms. For instance, implementing unstructured pru ...
IEEE2022
Show more
Related concepts (15)
Hyper-V
Microsoft Hyper-V, codenamed Viridian, and briefly known before its release as Windows Server Virtualization, is a native hypervisor; it can create virtual machines on x86-64 systems running Windows. Starting with Windows 8, Hyper-V superseded Windows Virtual PC as the hardware virtualization component of the client editions of Windows NT. A server computer running Hyper-V can be configured to expose individual virtual machines to one or more networks.
Linux kernel
The Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally written in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU operating system, which was written to be a free (libre) replacement for Unix. Linux is provided under the GNU General Public License version 2 only, but it contains files under other compatible licenses.
X86 virtualization
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel (VT-x) and AMD (AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.