Concept

Hardware-assisted virtualization

Résumé
In computing, hardware-assisted virtualization is a platform virtualization approach that enables efficient full virtualization using help from hardware capabilities, primarily from the host processors. A full virtualization is used to emulate a complete hardware environment, or virtual machine, in which an unmodified guest operating system (using the same instruction set as the host machine) effectively executes in complete isolation. Hardware-assisted virtualization was added to x86 processors (Intel VT-x, AMD-V or VIA VT) in 2005, 2006 and 2010 (respectively). Hardware-assisted virtualization is also known as accelerated virtualization; Xen calls it hardware virtual machine (HVM), and Virtual Iron calls it native virtualization. Timeline of virtualization development Hardware-assisted virtualization first appeared on the IBM System/370 in 1972, for use with VM/370, the first virtual machine operating system. With the increasing demand for high-definition computer graphics (e.g. CAD), virtualization of mainframes lost some attention in the late 1970s, when the upcoming minicomputers fostered resource allocation through distributed computing, encompassing the commoditization of microcomputers. IBM offers hardware virtualization for its IBM Power Systems hardware for AIX, Linux and IBM i, and for its IBM Z mainframes. IBM refers to its specific form of hardware virtualization as "logical partition", or more commonly as LPAR. The increase in compute capacity per x86 server (and in particular the substantial increase in modern networks' bandwidths) rekindled interest in data-center based computing which is based on virtualization techniques. The primary driver was the potential for server consolidation: virtualization allowed a single server to cost-efficiently consolidate compute power on multiple underutilized dedicated servers. The most visible hallmark of a return to the roots of computing is cloud computing, which is a synonym for data center based computing (or mainframe-like computing) through high bandwidth networks.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.