Concept

Midsphere

Summary
In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedra, including the regular, quasiregular and semiregular polyhedra and their duals all have midspheres. The radius of the midsphere is called the midradius. A polyhedron that has a midsphere is said to be midscribed about this sphere. When a polyhedron has a midsphere, one can form two perpendicular circle packings on the midsphere, one corresponding to the adjacencies between vertices of the polyhedron, and the other corresponding in the same way to its polar polyhedron, which has the same midsphere. The length of each polyhedron edge is the sum of the distances from its two endpoints to their corresponding circles in this circle packing. For every convex polyhedron there is a combinatorially equivalent polyhedron, the canonical polyhedron, that does have a midsphere, centered at the centroid of the points of tangency of the edges. Numerical approximation algorithms can construct it, but its coordinates cannot be represented exactly as a closed-form expression. Any canonical polyhedron and its polar dual can be used to form two opposite faces of a four-dimensional antiprism. A midsphere of a three-dimensional convex polyhedron is defined to be a sphere that is tangent to every edge of the polyhedron. That is to say, each edge must touch it, at an interior point of the edge, without crossing it. Equivalently, it is a sphere that contains the inscribed circle of every face of the polyhedron. When a midsphere exists, it is unique. Not every convex polyhedron has a midsphere; to have a midsphere, every face must have an inscribed circle (that is, it must be a tangential polygon), and all of these inscribed circles must belong to a single sphere. For example, a rectangular cuboid has a midsphere only when it is a cube, because otherwise it has non-square rectangles as faces, and these do not have inscribed circles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.