In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and is dual to the dual polyhedron's circumsphere.
The radius of the sphere inscribed in a polyhedron P is called the inradius of P.
All regular polyhedra have inscribed spheres, but most irregular polyhedra do not have all facets tangent to a common sphere, although it is still possible to define the largest contained sphere for such shapes. For such cases, the notion of an insphere does not seem to have been properly defined and various interpretations of an insphere are to be found:
The sphere tangent to all faces (if one exists).
The sphere tangent to all face planes (if one exists).
The sphere tangent to a given set of faces (if one exists).
The largest sphere that can fit inside the polyhedron.
Often these spheres coincide, leading to confusion as to exactly what properties define the insphere for polyhedra where they do not coincide.
For example, the regular small stellated dodecahedron has a sphere tangent to all faces, while a larger sphere can still be fitted inside the polyhedron. Which is the insphere? Important authorities such as Coxeter or Cundy & Rollett are clear enough that the face-tangent sphere is the insphere. Again, such authorities agree that the Archimedean polyhedra (having regular faces and equivalent vertices) have no inspheres while the Archimedean dual or Catalan polyhedra do have inspheres. But many authors fail to respect such distinctions and assume other definitions for the 'inspheres' of their polyhedra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedra, including the regular, quasiregular and semiregular polyhedra and their duals all have midspheres. The radius of the midsphere is called the midradius. A polyhedron that has a midsphere is said to be midscribed about this sphere.
In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the term circumcircle. As in the case of two-dimensional circumscribed circles (circumcircles), the radius of a sphere circumscribed around a polyhedron P is called the circumradius of P, and the center point of this sphere is called the circumcenter of P.
Mysterium Cosmographicum (lit. The Cosmographic Mystery, alternately translated as Cosmic Mystery, The Secret of the World, or some variation) is an astronomy book by the German astronomer Johannes Kepler, published at Tübingen in late 1596 and in a second edition in 1621. Kepler proposed that the distance relationships between the six planets known at that time could be understood in terms of the five Platonic solids, enclosed within a sphere that represented the orbit of Saturn.
Given an integral polyhedron P subset of R-n and a rational polyhedron Q subset of R-n containing the same integer points as P, we investigate how many iterations of the Chvatal-Gomory closure operator have to be performed on Q to obtain a polyhedron conta ...
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogen ...
This thesis is focused on the study of the morphology of micropores formed during solidification of metallic alloys. Micropores constrained to form in well-developed dendritic solid network adopt complex non-spherical shapes. Previous studies using X-ray t ...