Concept

Centrifugal mechanism of acceleration

Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit. It is well known that the magnetospheres of AGNs and pulsars are characterized by strong magnetic fields that force charged particles to follow the field lines. If the magnetic field is rotating (which is the case for such astrophysical objects), the particles will inevitably undergo centrifugal acceleration. The pioneering work by Machabeli & Rogava was a thought experiment in which a bead moves inside a straight rotating pipe. Dynamics of the particle were analyzed both analytically and numerically and it was shown that if the rigid rotation is maintained for a sufficiently long time energy of the bead will asymptotically increase. In particular, Rieger & Mannheim, building on the theory of Machabeli & Rogava, showed that the Lorentz factor of the bead behaves as where is the initial Lorentz factor, Ω is the angular velocity of rotation, is the radial coordinate of the particle, and is the speed of light. From this behavior it is evident that radial motion will exhibit a nontrivial character. In due course of motion the particle will reach the light cylinder surface (a hypothetical area where the linear velocity of rotation exactly equals the speed of light), leading to the increase of the poloidal component of velocity. On the other hand, the total velocity cannot exceed the speed of light, therefore, the radial component must decrease. This means that the centrifugal force changes its sign. As is seen from (), the Lorentz factor of the particle tends to infinity if the rigid rotation is maintained.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.