Summary
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere. Cosmic rays were discovered by Victor Hess in 1912 in balloon experiments, for which he was awarded the 1936 Nobel Prize in Physics. Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from the Fermi Space Telescope (2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernova explosions of stars. Based on observations of neutrinos and gamma rays from blazar TXS 0506+056 in 2018, active galactic nuclei also appear to produce cosmic rays. The term ray (as in optical ray) seems to have arisen from an initial belief, due to their penetrating power, that cosmic rays were mostly electromagnetic radiation. Nevertheless following wider recognition as various high-energy particles with intrinsic mass the term rays was still consistent with then known particles such as cathode rays, canal rays, alpha rays and beta rays. Meanwhile "cosmic" ray photons, which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as gamma rays or X-rays, depending on their photon energy. Of primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the bare nuclei of well-known atoms (stripped of their electron shells), and about 1% are solitary electrons (that is, one type of beta particle).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.