Summary
Event-driven architecture (EDA) is a software architecture paradigm promoting the production, detection, consumption of, and reaction to events. An event can be defined as "a significant change in state". For example, when a consumer purchases a car, the car's state changes from "for sale" to "sold". A car dealer's system architecture may treat this state change as an event whose occurrence can be made known to other applications within the architecture. From a formal perspective, what is produced, published, propagated, detected or consumed is a (typically asynchronous) message called the event notification, and not the event itself, which is the state change that triggered the message emission. Events do not travel, they just occur. However, the term event is often used metonymically to denote the notification message itself, which may lead to some confusion. This is due to Event-driven architectures often being designed atop message-driven architectures, where such communication pattern requires one of the inputs to be text-only, the message, to differentiate how each communication should be handled. This architectural pattern may be applied by the design and implementation of applications and systems that transmit events among loosely coupled software components and services. An event-driven system typically consists of event emitters (or agents), event consumers (or sinks), and event channels. Emitters have the responsibility to detect, gather, and transfer events. An Event Emitter does not know the consumers of the event, it does not even know if a consumer exists, and in case it exists, it does not know how the event is used or further processed. Sinks have the responsibility of applying a reaction as soon as an event is presented. The reaction might or might not be completely provided by the sink itself. For instance, the sink might just have the responsibility to filter, transform and forward the event to another component or it might provide a self-contained reaction to such an event.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
AR-461: UE G : Architecture By Any Means [BAM]
The course will tackle different types of practicing architecture with a focus on communication tools and its different formats to convey an architectural message. It explores strategies for translati
Related concepts (5)
Enterprise service bus
An enterprise service bus (ESB) implements a communication system between mutually interacting software applications in a service-oriented architecture (SOA). It represents a software architecture for distributed computing, and is a special variant of the more general client-server model, wherein any application may behave as server or client. ESB promotes agility and flexibility with regard to high-level protocol communication between applications. Its primary use is in enterprise application integration (EAI) of heterogeneous and complex service landscapes.
Loose coupling
In computing and systems design, a loosely coupled system is one in which components are weakly associated (have breakable relationships) with each other, and thus changes in one component least affect existence or performance of another component. in which each of its components has, or makes use of, little or no knowledge of the definitions of other separate components. Subareas include the coupling of classes, interfaces, data, and services. Loose coupling is the opposite of tight coupling.
Message-oriented middleware
Message-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces.
Show more