Message-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces. APIs that extend across diverse platforms and networks are typically provided by MOM. This middleware layer allows software components (applications, Enterprise JavaBeans, servlets, and other components) that have been developed independently and that run on different networked platforms to interact with one another. Applications distributed on different network nodes use the application interface to communicate. In addition, by providing an administrative interface, this new, virtual system of interconnected applications can be made fault tolerant and secure. MOM provides software elements that reside in all communicating components of a client/server architecture and typically support asynchronous calls between the client and server applications. MOM reduces the involvement of application developers with the complexity of the master-slave nature of the client/server mechanism. Remote procedure call or RPC-based middleware Object request broker or ORB-based middleware Message-oriented middleware or MOM-based middleware All these models make it possible for one software component to affect the behavior of another component over a network. They are different in that RPC- and ORB-based middleware create systems of tightly coupled components, whereas MOM-based systems allow for a loose coupling of components. In an RPC- or ORB-based system, when one procedure calls another, it must wait for the called procedure to return before it can do anything else.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
COM-404: Information theory and coding
The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Show more
Related lectures (35)
Belief Propagation: Key Methods and Analysis
Covers Belief Propagation, a key method for both analysis and algorithm.
Actor Messaging Semantics
Covers the semantics of message processing in Akka actors, emphasizing actor encapsulation and collaboration.
Exam Q&A Session
Is a Q&A session covering algorithm correctness, rank functions, and message complexity in distributed systems.
Show more
Related publications (183)

uKharon: A Membership Service for Microsecond Applications

Rachid Guerraoui, Antoine Murat, Javier Picorel Obando, Athanasios Xygkis

Modern data center fabrics open the possibility of microsecond distributed applications, such as data stores and message queues. A challenging aspect of their development is to ensure that, besides being fast in the common case, these applications react fa ...
USENIX Association2023

Private Message Franking with After Opening Privacy

Serge Vaudenay, Iraklis Leontiadis

Recently Grubbs et al. [GLR17] initiated the formal study of message franking protocols. This new type of service launched by Facebook, allows the receiver in a secure messaging application to verifiably report to a third party an abusive message some send ...
2023

Learning Dynamics of Spring-Mass Models with Physics-Informed Graph Neural Networks

Olga Fink, Vinay Sharma, Manav Manav

We propose a physics-informed message-passing graph neural network (GNN) for learning the dynamics of springmass systems. The proposed method embeds the underlying physics directly into the message-passing scheme of the GNN. We compare the new scheme with ...
Research Publishing2023
Show more
Related concepts (12)
Publish–subscribe pattern
In software architecture, publish–subscribe is a messaging pattern where publishers categorize messages into classes that are received by subscribers. This is contrasted to the typical messaging pattern model where publishers sends messages directly to a subscribers. Similarly, subscribers express interest in one or more classes and only receive messages that are of interest, without knowledge of which publishers, if any, there are. Publish–subscribe is a sibling of the message queue paradigm, and is typically one part of a larger message-oriented middleware system.
Message queue
In computer science, message queues and mailboxes are software-engineering components typically used for inter-process communication (IPC), or for inter-thread communication within the same process. They use a queue for messaging – the passing of control or of content. Group communication systems provide similar kinds of functionality. The message queue paradigm is a sibling of the publisher/subscriber pattern, and is typically one part of a larger message-oriented middleware system.
Middleware
Middleware is a type of computer software that provides services to software applications beyond those available from the operating system. It can be described as "software glue". Middleware makes it easier for software developers to implement communication and input/output, so they can focus on the specific purpose of their application. It gained popularity in the 1980s as a solution to the problem of how to link newer applications to older legacy systems, although the term had been in use since 1968.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.