Diving physics, or the physics of underwater diving is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim, and the hazards and risks of diving.
Changes in density of breathing gas affect the ability of the diver to breathe effectively, and variations in partial pressure of breathing gas constituents have profound effects on the health and ability to function underwater of the diver.
The main laws of physics that describe the influence of the underwater diving environment on the diver and diving equipment include:
Archimedes' principle (Buoyancy) - Ignoring the minor effect of surface tension, an object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Thus, when in water, the weight of the volume of water displaced as compared to the weight of the diver's body and the diver's equipment, determine whether the diver floats or sinks. Buoyancy control, and being able to maintain neutral buoyancy in particular, is an important safety skill. The diver needs to understand buoyancy to effectively and safely operate drysuits, buoyancy compensators, diving weighting systems and lifting bags.
The concept of pressure as force distributed over area, and the variation of pressure with immersed depth are central to the understanding of the physiology of diving, particularly the physiology of decompression and of barotrauma.
The absolute pressure on a diver is the sum of the local atmospheric pressure and hydrostatic pressure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving.
Professional diving is underwater diving where the divers are paid for their work. The procedures are often regulated by legislation and codes of practice as it is an inherently hazardous occupation and the diver works as a member of a team. Due to the dangerous nature of some professional diving operations, specialized equipment such as an on-site hyperbaric chamber and diver-to-surface communication system is often required by law, and the mode of diving for some applications may be regulated.
Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface air supply, and therefore has a limited but variable endurance. The name "scuba", an acronym for "Self-Contained Underwater Breathing Apparatus", was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers.
In the last decades, transportation demand growth has played a major role in the increase of global CO2 footprint. At the same time, a number of countries have scheduled measurable and substantial cutback of CO2 emissions by 2050. As the transportation sec ...
EPFL2023
Gravity currents are buoyancy-driven flows having a significant impact on the environment and human life. They can be observed in a vast range of natural and anthropogenic scenarios, such as seawater and freshwater, the atmosphere, or industrial processes. ...
This work studies the nearshore hydrodynamics of a shallow turbulent flow entering a laterally unconfined quiescent ambient with a sloping bottom boundary. Examples of such flow are neutrally buoyant ebb tidal jets and hyperpycnal river plumes entering ope ...