In vertebrates, the ventricular zone (VZ) is a transient embryonic layer of tissue containing neural stem cells, principally radial glial cells, of the central nervous system (CNS). The VZ is so named because it lines the ventricular system, which contains cerebrospinal fluid (CSF). The embryonic ventricular system contains growth factors and other nutrients needed for the proper function of neural stem cells. Neurogenesis, or the generation of neurons, occurs in the VZ during embryonic and fetal development as a function of the Notch pathway, and the newborn neurons must migrate substantial distances to their final destination in the developing brain or spinal cord where they will establish neural circuits. A secondary proliferative zone, the subventricular zone (SVZ), lies adjacent to the VZ. In the embryonic cerebral cortex, the SVZ contains intermediate neuronal progenitors that continue to divide into post-mitotic neurons. Through the process of neurogenesis, the parent neural stem cell pool is depleted and the VZ disappears. The balance between the rates of stem cell proliferation and neurogenesis changes during development, and species from mouse to human show large differences in the number of cell cycles, cell cycle length, and other parameters, which is thought to give rise to the large diversity in brain size and structure.
Epigenetic DNA modifications appear to have a central role in regulating gene expression during differentiation of neural stem cells. One type of epigenetic modification occurring in the VZ is the formation of DNA 5-Methylcytosine from cytosine by DNA methyltransferases. Another important type of epigenetic modification is the demethylation of 5mC, catalyzed in several steps by TET enzymes and enzymes of the base excision repair pathway.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others.
Lissencephaly (ˌlɪs.ɛnˈsɛf.əl.i, meaning 'smooth brain') is a set of rare brain disorders whereby the whole or parts of the surface of the brain appear smooth. It is caused by defective neuronal migration during the 12th to 24th weeks of gestation resulting in a lack of development of brain folds (gyri) and grooves (sulci). It is a form of cephalic disorder. Terms such as agyria (no gyri) and pachygyria (broad gyri) are used to describe the appearance of the surface of the brain.
The ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventricular system is continuous with the central canal of the spinal cord from the fourth ventricle, allowing for the flow of CSF to circulate. All of the ventricular system and the central canal of the spinal cord are lined with ependyma, a specialised form of epithelium connected by tight junctions that make up the blood–cerebrospinal fluid barrier.
Explores brain development, from neurulation to adult neurogenesis, emphasizing the influence of environmental factors and the potential impact on memory and brain recovery.
Explores neurodevelopment in human embryos, from neurulation to adult neurogenesis, highlighting the influence of environmental factors and the connection to depression.
Microcomputed tomography (mu CT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, ...
BACKGROUND AND PURPOSE: MS lesions exhibit varying degrees of axonal and myelin damage. A comprehensive description of lesion phenotypes could contribute to an improved radiologic evaluation of smoldering inflammation and remyelination processes. This stud ...
Muscle stem cells (MuSCs) are the primary source of myogenic progenitors during muscle repair and are essential for the long-term regenerative capacity of skeletal muscle. Following myofiber injury, MuSCs transition from a quiescent to an activated state, ...