Summary
In computer science, threaded code is a programming technique where the code has a form that essentially consists entirely of calls to subroutines. It is often used in compilers, which may generate code in that form or be implemented in that form themselves. The code may be processed by an interpreter or it may simply be a sequence of machine code call instructions. Threaded code has better density than code generated by alternative generation techniques and by alternative calling conventions. In cached architectures, it may execute slightly slower. However, a program that is small enough to fit in a computer processor's cache may run faster than a larger program that suffers many cache misses. Small programs may also be faster at thread switching, when other programs have filled the cache. Threaded code is best known for its use in many compilers of programming languages, such as Forth, many implementations of BASIC, some implementations of COBOL, early versions of B, and other languages for small minicomputers and for amateur radio satellites. The common way to make computer programs is to use a compiler to translate source code (written in some symbolic language) to machine code. The resulting executable is typically fast but, because it is specific to a hardware platform, it isn't portable. A different approach is to generate instructions for a virtual machine and to use an interpreter on each hardware platform. The interpreter instantiates the virtual machine environment and executes the instructions. Thus, only the interpreter must be compiled. Early computers had relatively little memory. For example, most Data General Nova, IBM 1130, and many of the first microcomputers had only 4 kB of RAM installed. Consequently, a lot of time was spent trying to find ways to reduce a program's size, to fit in the available memory. One solution is to use an interpreter which reads the symbolic language a bit at a time, and calls functions to perform the actions. As the source code is typically much denser than the resulting machine code, this can reduce overall memory use.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.