Concave functionIn mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex. A real-valued function on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any and in the interval and for any , A function is called strictly concave if for any and . For a function , this second definition merely states that for every strictly between and , the point on the graph of is above the straight line joining the points and .
Bounded functionIn mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number M such that for all x in X. A function that is not bounded is said to be unbounded. If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below.
A* search algorithmA* (pronounced "A-star") is a graph traversal and path search algorithm, which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms that can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases.
Product orderIn mathematics, given a partial order and on a set and , respectively, the product order (also called the coordinatewise order or componentwise order) is a partial ordering on the Cartesian product Given two pairs and in declare that if and Another possible ordering on is the lexicographical order, which is a total ordering. However the product order of two total orders is not in general total; for example, the pairs and are incomparable in the product order of the ordering with itself.
Order embeddingIn order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections, order embeddings constitute a notion which is strictly weaker than the concept of an order isomorphism. Both of these weakenings may be understood in terms of . Formally, given two partially ordered sets (posets) and , a function is an order embedding if is both order-preserving and order-reflecting, i.e.
Infimum and supremumIn mathematics, the infimum (abbreviated inf; plural infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists.
Classification of discontinuitiesContinuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a point in its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
Linear extensionIn order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. A partial order is a reflexive, transitive and antisymmetric relation.