Summary
In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number M such that for all x in X. A function that is not bounded is said to be unbounded. If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where X is taken to be the set N of natural numbers. Thus a sequence f = (a0, a1, a2, ...) is bounded if there exists a real number M such that for every natural number n. The set of all bounded sequences forms the sequence space . The definition of boundedness can be generalized to functions f : X → Y taking values in a more general space Y by requiring that the image f(X) is a bounded set in Y. Weaker than boundedness is local boundedness. A family of bounded functions may be uniformly bounded. A bounded operator T : X → Y is not a bounded function in the sense of this page's definition (unless T = 0), but has the weaker property of preserving boundedness: Bounded sets M ⊆ X are mapped to bounded sets T(M) ⊆ Y. This definition can be extended to any function f : X → Y if X and Y allow for the concept of a bounded set. Boundedness can also be determined by looking at a graph. The sine function sin : R → R is bounded since for all . The function , defined for all real x except for −1 and 1, is unbounded. As x approaches −1 or 1, the values of this function get larger in magnitude. This function can be made bounded if one restricts its domain to be, for example, [2, ∞) or (−∞, −2]. The function , defined for all real x, is bounded, since for all x. The inverse trigonometric function arctangent defined as: y = arctan(x) or x = tan(y) is increasing for all real numbers x and bounded with −pi/2 < y < pi/2 radians By the boundedness theorem, every continuous function on a closed interval, such as f : [0, 1] → R, is bounded.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.