In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number M such that for all x in X. A function that is not bounded is said to be unbounded. If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where X is taken to be the set N of natural numbers. Thus a sequence f = (a0, a1, a2, ...) is bounded if there exists a real number M such that for every natural number n. The set of all bounded sequences forms the sequence space . The definition of boundedness can be generalized to functions f : X → Y taking values in a more general space Y by requiring that the image f(X) is a bounded set in Y. Weaker than boundedness is local boundedness. A family of bounded functions may be uniformly bounded. A bounded operator T : X → Y is not a bounded function in the sense of this page's definition (unless T = 0), but has the weaker property of preserving boundedness: Bounded sets M ⊆ X are mapped to bounded sets T(M) ⊆ Y. This definition can be extended to any function f : X → Y if X and Y allow for the concept of a bounded set. Boundedness can also be determined by looking at a graph. The sine function sin : R → R is bounded since for all . The function , defined for all real x except for −1 and 1, is unbounded. As x approaches −1 or 1, the values of this function get larger in magnitude. This function can be made bounded if one restricts its domain to be, for example, [2, ∞) or (−∞, −2]. The function , defined for all real x, is bounded, since for all x. The inverse trigonometric function arctangent defined as: y = arctan(x) or x = tan(y) is increasing for all real numbers x and bounded with −pi/2 < y < pi/2 radians By the boundedness theorem, every continuous function on a closed interval, such as f : [0, 1] → R, is bounded.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.