In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. Some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption. It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference between the variances in the population.
Some of the procedures typically assuming homoscedasticity, for which one can use Levene's tests, include analysis of variance and t-tests.
Levene's test is sometimes used before a comparison of means, informing the decision on whether to use a pooled t-test or the Welch's t-test. However, it was shown that such a two-step procedure may markedly inflate the type 1 error obtained with the t-tests and thus should not be done in the first place. Instead, the choice of pooled or Welch's test should be made a priori based on the study design.
Levene's test may also be used as a main test for answering a stand-alone question of whether two sub-samples in a given population have equal or different variances.
Levene's test was developed by and named after American statistician and geneticist Howard Levene.
Levene's test is equivalent to a 1-way between-groups analysis of variance (ANOVA) with the dependent variable being the absolute value of the difference between a score and the mean of the group to which the score belongs (shown below as ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance. Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. This particular situation is of importance in mathematical statistics since it provides a basic exemplar case in which the F-distribution can be derived.
In statistics, a sequence (or a vector) of random variables is homoscedastic (ˌhoʊmoʊskəˈdæstɪk) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and heteroskedasticity are also frequently used.
An F-test is any statistical test in which the test statistic has an F-distribution under the null hypothesis. It is most often used when comparing statistical models that have been fitted to a data set, in order to identify the model that best fits the population from which the data were sampled. Exact "F-tests" mainly arise when the models have been fitted to the data using least squares. The name was coined by George W. Snedecor, in honour of Ronald Fisher. Fisher initially developed the statistic as the variance ratio in the 1920s.
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
The students understand elementary concepts of statistical methods, including standard statistical tests, regression analysis and experimental design. They apply computational statistical methods to a
Suppose we are given two independent strings of data from a known finite alphabet. We are interested in testing the null hypothesis that both the strings were drawn from the same distribution, assuming that the samples within each string are mutually indep ...
Ieee2012
, ,
This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure ...
Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic fl ...