In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.
Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. This particular situation is of importance in mathematical statistics since it provides a basic exemplar case in which the F-distribution can be derived. For application in applied statistics, there is concern that the test is so sensitive to the assumption of normality that it would be inadvisable to use it as a routine test for the equality of variances. In other words, this is a case where "approximate normality" (which in similar contexts would often be justified using the central limit theorem), is not good enough to make the test procedure approximately valid to an acceptable degree.
Let X1, ..., Xn and Y1, ..., Ym be independent and identically distributed samples from two populations which each has a normal distribution. The expected values for the two populations can be different, and the hypothesis to be tested is that the variances are equal. Let
be the sample means. Let
be the sample variances. Then the test statistic
has an F-distribution with n − 1 and m − 1 degrees of freedom if the null hypothesis of equality of variances is true. Otherwise it follows an F-distribution scaled by the ratio of true variances. The null hypothesis is rejected if F is either too large or too small based on the desired alpha level (i.e., statistical significance).
This F-test is known to be extremely sensitive to non-normality, so Levene's test, Bartlett's test, or the Brown–Forsythe test are better tests for testing the equality of two variances. (However, all of these tests create experiment-wise type I error inflations when conducted as a test of the assumption of homoscedasticity prior to a test of effects.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. Some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption. It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). If the resulting p-value of Levene's test is less than some significance level (typically 0.
In statistics, Bartlett's test, named after Maurice Stevenson Bartlett, is used to test homoscedasticity, that is, if multiple samples are from populations with equal variances. Some statistical tests, such as the analysis of variance, assume that variances are equal across groups or samples, which can be verified with Bartlett's test. In a Bartlett test, we construct the null and alternative hypothesis. For this purpose several test procedures have been devised. The test procedure due to M.S.
An F-test is any statistical test in which the test statistic has an F-distribution under the null hypothesis. It is most often used when comparing statistical models that have been fitted to a data set, in order to identify the model that best fits the population from which the data were sampled. Exact "F-tests" mainly arise when the models have been fitted to the data using least squares. The name was coined by George W. Snedecor, in honour of Ronald Fisher. Fisher initially developed the statistic as the variance ratio in the 1920s.
Our goal is to detect and group different kinds of local symmetries in images in a scale- and rotation-invariant way. We propose an efficient wavelet-based method to determine the order of local symmetry at each location. Our algorithm relies on circular h ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions. Central to effective decision-making is the discipline of optimization, which seeks the ...
In 1948, Claude Shannon laid the foundations of information theory, which grew out of a study to find the ultimate limits of source compression, and of reliable communication. Since then, information theory has proved itself not only as a quest to find the ...