In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, would be replaced by , would become , and so on. The method is named after Julius Caesar, who used it in his private correspondence. The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communications security. The transformation can be represented by aligning two alphabets; the cipher alphabet is the plain alphabet rotated left or right by some number of positions. For instance, here is a Caesar cipher using a left rotation of three places, equivalent to a right shift of 23 (the shift parameter is used as the key): When encrypting, a person looks up each letter of the message in the "plain" line and writes down the corresponding letter in the "cipher" line. Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD Deciphering is done in reverse, with a right shift of 3. The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A → 0, B → 1, ..., Z → 25. Encryption of a letter x by a shift n can be described mathematically as, Decryption is performed similarly, (Here, "mod" refers to the modulo operation. The value x is in the range 0 to 25, but if x + n or x − n are not in this range then 26 should be added or subtracted.) The replacement remains the same throughout the message, so the cipher is classed as a type of monoalphabetic substitution, as opposed to polyalphabetic substitution.
Serge Vaudenay, Subhadeep Banik, Fatma Betül Durak, Khashayar Barooti
Andrea Felice Caforio, Subhadeep Banik, Muhammed Fatih Balli
Andrea Felice Caforio, Subhadeep Banik, Muhammed Fatih Balli